

Towards Semantic Adversarial Examples

Somesh Jha

Oct 10, 2019

SAS 2019

Thanks to Nicolas Papernot, Ian Goodfellow and Jerry Zhu for some slides.

Joint work with Tommaso Dreossi and Sanjit Seshia (Berkeley)

Plan

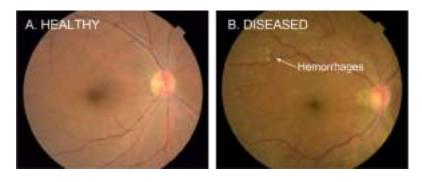
- Part I [Adversarial ML] ~25mins
 - Different types of attacks
 - Test-time attacks
 - Defenses
 - Theoretical explorations
- Part II [Opportunities in FM] ~Rest of the talk
 - Opportunities for FM researchers
 - Focus on lot of work by Tommaso and Sanjit

Announcements/Caveats

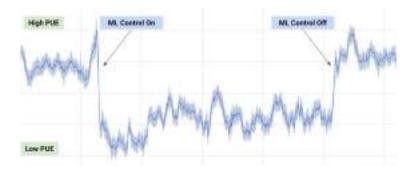
ANNOUNCEMENTS

- Please ask questions during the talk
 - If we don't finish, fine ©

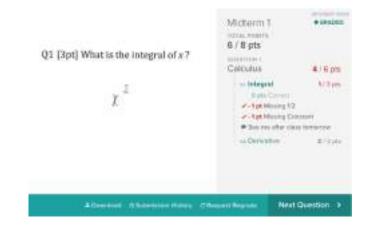
- Lot of skipping will be going on
- Fast moving area
 - Apologies if I don't mention your paper
- Legend



Machine learning brings social disruption at scale

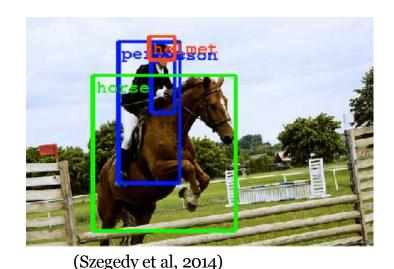

Healthcare

Source: Peng and Gulshan (2017)


Transportation

Source: Google

Energy


Source: Deepmind

Education

Source: Gradescope

ML reached "human-level performance" on many IID tasks circa 2013

...recognizing objects and faces....



(Taigmen et al, 2013)

reading addresses...

...solving CAPTCHAS and

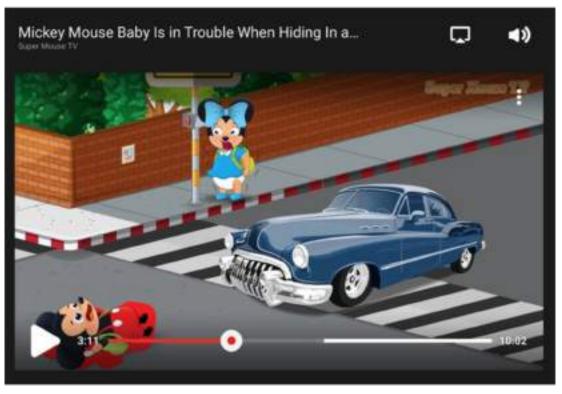
(Goodfellow et al, 2013)

(Goodfellow et al, 2013)

ML beating doctors©

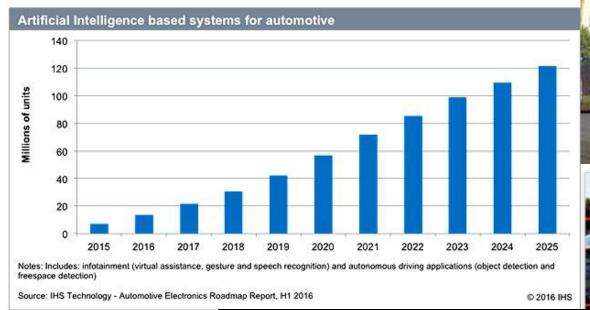
- NOVEMBER 15, 2017
 - Stanford algorithm can diagnose pneumonia better than radiologists
- April 14, 2017
 - Self-taught artificial intelligence beats doctors at predicting heart attacks

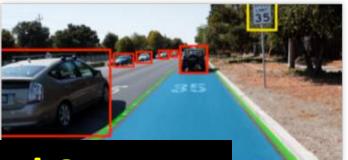
•


Machine learning is deployed in adversarial settings

Microsoft's Tay chatbot

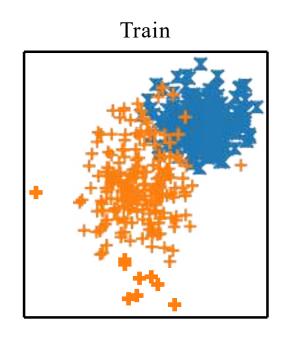
Training data poisoning

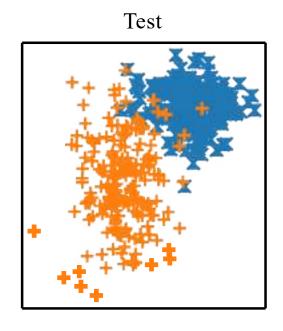



YouTube filtering

Content evades detection at *inference*

ML in CPS





I.I.D. Machine Learning

I: Independent

I: Identically

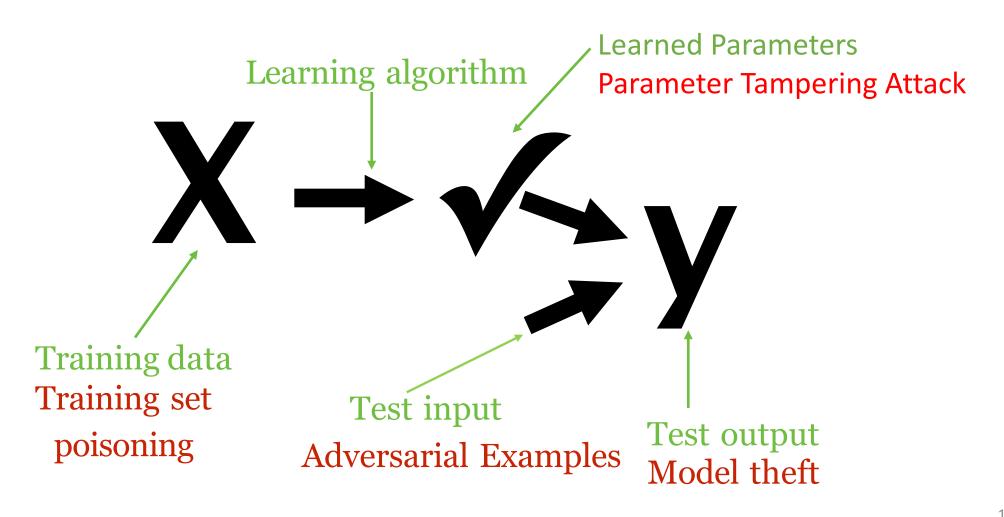
D: Distributed

All train and test examples drawn independently from same distribution

Security Requires Moving Beyond I.I.D.

 Not identical: attackers can use unusual inputs

(Eykholt et al, CVPR 2017)


• Not independent: attacker can repeatedly send a single mistake ("test set attack")

Adversarial Learning is not new!!

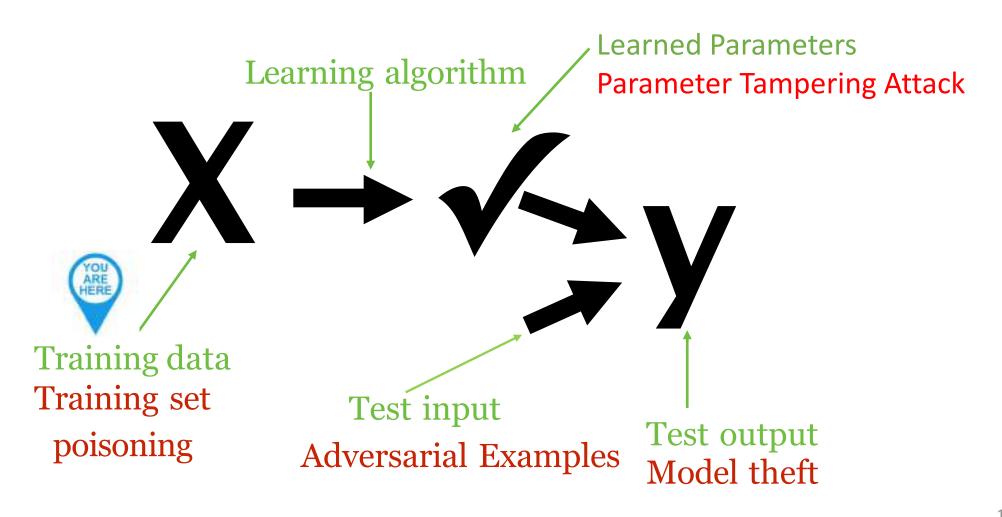
- Lowd: I spent the summer of 2004 at Microsoft Research working with Chris Meek on the problem of spam.
 - We looked at a common technique spammers use to defeat filters: adding "good words" to their emails.
 - We developed techniques for evaluating the robustness of spam filters, as well as a theoretical framework for the general problem of learning to defeat a classifier (Lowd and Meek, 2005)
- But...
 - New resurgence in ML and hence new problems
 - Lot of new theoretical techniques being developed
 - High dimensional robust statistics, robust optimization, ...

Attacks on the machine learning pipeline

ML (Basics)

- Supervised learning
- Entities
 - (Sample Space) $Z = X \times Y$
 - (data, label) (*x*, *y*)
 - (Distribution over Z) D
 - (Hypothesis Space) H
 - (loss function) $l: (H \times Z) \to R$

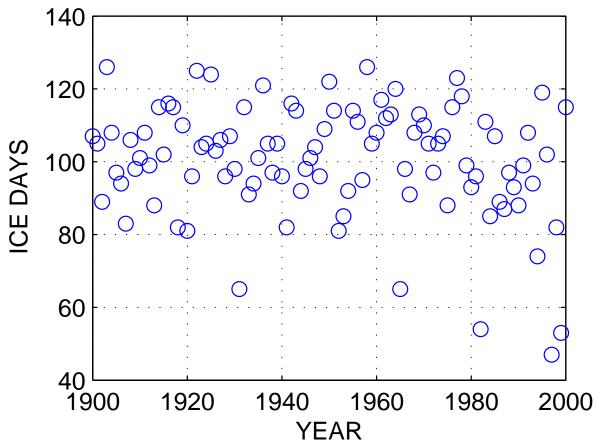
ML (Basics)

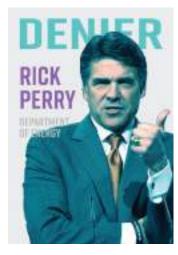

- Learner's problem
 - Find $w \in H$ that minimizes
 - $E_{\{z\sim D\}} l(w,z) + \lambda R(w)$
 - $\frac{1}{m} \sum_{i=1}^{m} l(w, (x_i, y_i)) + \lambda R(w)$
- Sample set $S = \{(x_1, y_1), ..., (x_m, y_m)\}$
- Stochastic Gradient Descent (SGD)
 - (iteration) $w[t+1] = w[t] \eta_t l'(w[t], (x_{\{i_t\}}, y_{\{i_t\}}))$
 - (learning rate) η_t
 - ...

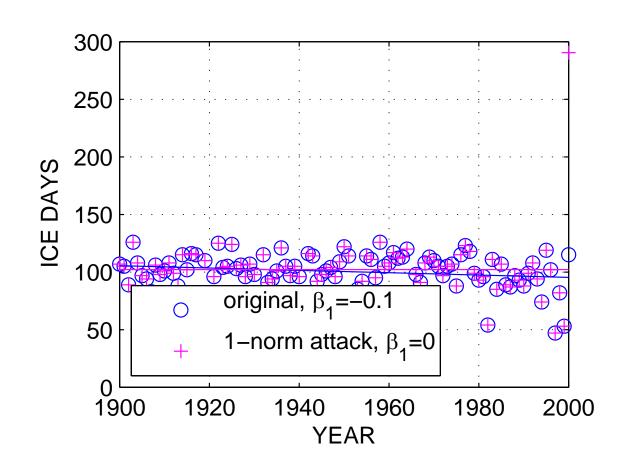
ML (Basics)

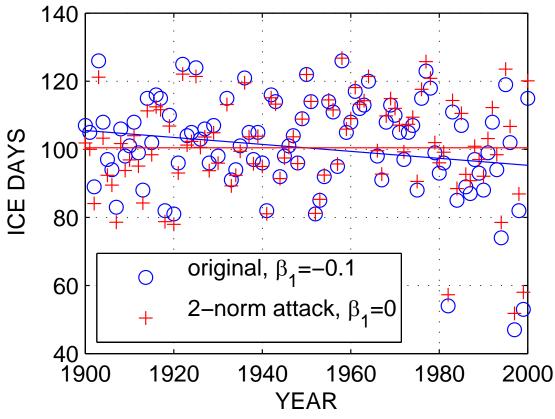
- After Training
 - $F_w: X \to Y$
 - $F_w(x) = \underset{\{y \in Y\}}{\operatorname{argmax}} s(F_w)(x)$
 - (softmax layer) $s(F_w)$
 - Sometimes we will write F_w simply as F
 - w will be implicit

Training Time Attack

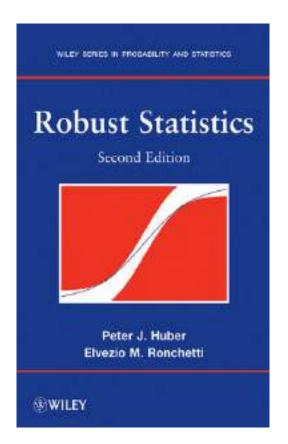

Attacks on the machine learning pipeline

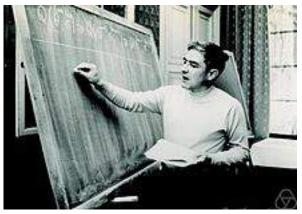

Lake Mendota Ice Days





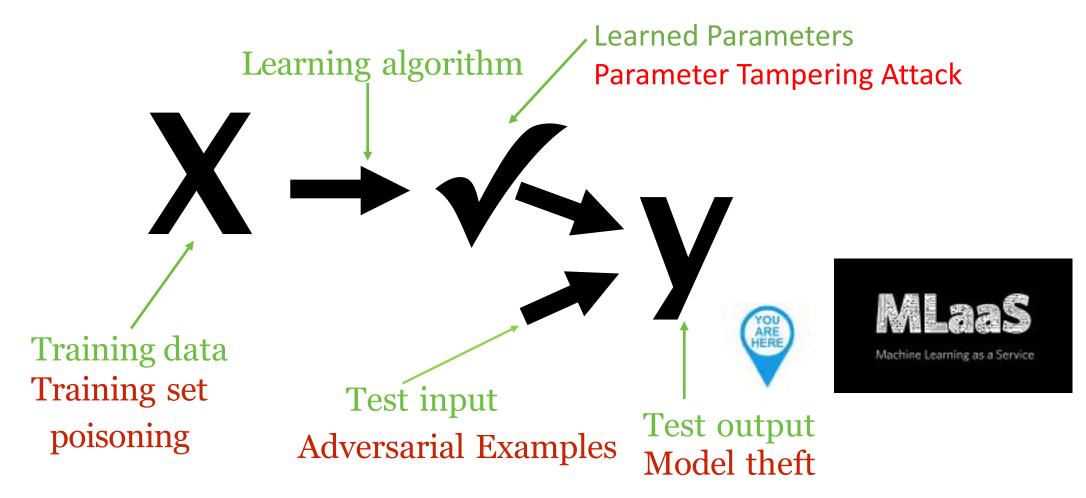
Poisoning Attacks





Formalization

- Alice picks a data set S of size m
- Alice gives the data set to Bob
- Bob picks
 - ϵm points S^B
 - Gives the data set $S \cup S^B$ back to Alice
 - Or could replace some points in S
- Goal of Bob
 - Maximize the error for Alice
- Goal of Alice
 - Get close to learning from clean data


Representative Papers

- Being Robust (in High Dimensions) Can be Practical
 I. Diakonikolas, G. Kamath, D. Kane, J. Li, A. Moitra, A. Stewart
 ICML 2017
- Certified Defenses for Data Poisoning Attacks. Jacob Steinhardt, Pang Wei Koh, Percy Liang. NIPS 2017
- Scott Alfeld, Xiaojin Zhu, and Paul Barford. Explicit defense actions against test-set attacks. AAAI 2017
- Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks, NIPS 18

• ...

Model Extraction/Theft Attack

Attacks on the machine learning pipeline

Model Theft

- Model theft: extract model parameters by queries (intellectual property theft)
 - Given a classifier F
 - Query F on q_1, \dots, q_n and learn a classifier G
 - $F \approx G$
- Goals: leverage active learning literature to develop new attacks and preventive techniques

Papers:

- Stealing Machine Learning Models using Prediction APIs, Tramer et al., Usenix Security 2016
- Exploring Connections Between Active Learning and Model Extraction,
 Chandrasekaran et al, Usenix Security 2020

Fake-News Attacks

Fake News Attacks

Abusive use of machine learning:

Using GANs to generate **fake content** (a.k.a deep fakes)

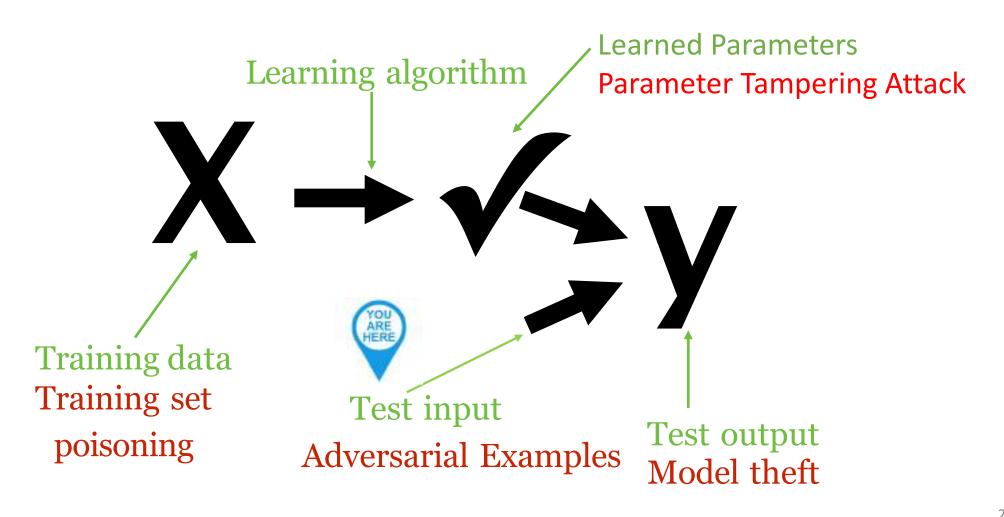
Strong societal implications:

elections, automated trolling, court

evidence ...

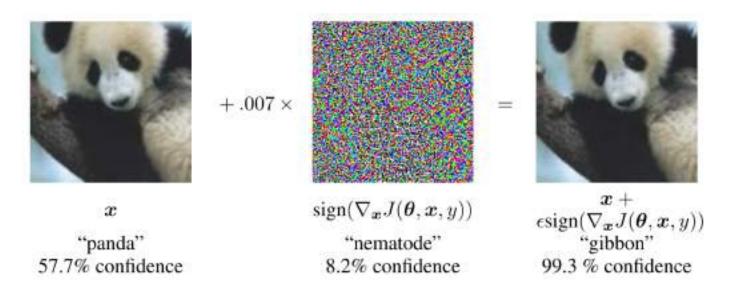
Generative media:

- Video of Obama saying things he never said, ...
- Automated reviews, tweets, comments, indistinguishable from human-generated content

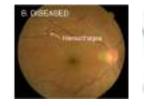

Obama Fake Video

Test-time Attacks

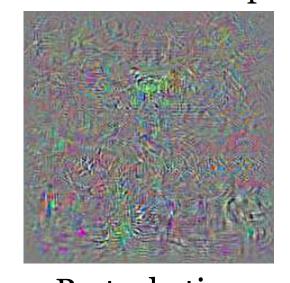
Attacks on the machine learning pipeline


Definition

"Adversarial examples are inputs to machine learning models that an attacker has intentionally designed to cause the model to make a mistake"


(Goodfellow et al 2017)

What if the adversary systematically found these inputs?



Good models make surprising mistakes in non-IID setting

"Adversarial examples"

Schoolbus

Perturbation (rescaled for visualization)

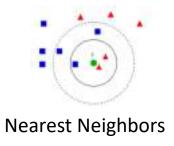
(Szegedy et al, 2013)

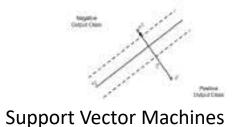
Ostrich

Adversarial Examples

88% tabby cat

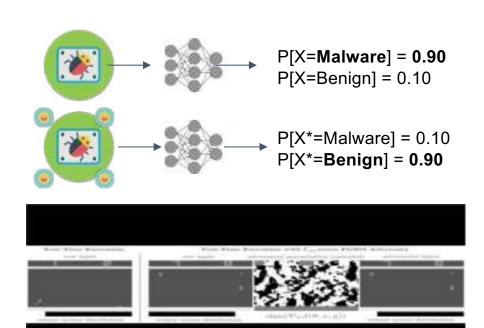
99% guacamole


Don't Bring Your Turtle to a Gun Fight



Adversarial examples...

... beyond deep learning



Decision Trees

... beyond computer vision

Formal Definition (Local Robustness)

- Let $O \subseteq X \times X$ be a binary oracle
 - O(x, x') = 1 (examples x and x' "perceived" same)

- Otherwise 0 (Examples are "perceived" different)
- Targeted local robustness $TR^{O}(x, F, t)$
 - $\forall x' : O(x, x') \Rightarrow \neg(F(x') = t)$
- Global targeted robustness predicate/metric $GTR^{O}(F,t)$
 - $E_{\{x\sim D\}}$ $(TR^o(x,F,t))$
- Observation
 - Targeted adversarial examples are counterexamples to $GTR^{O}(F,t)$

Global Robustness

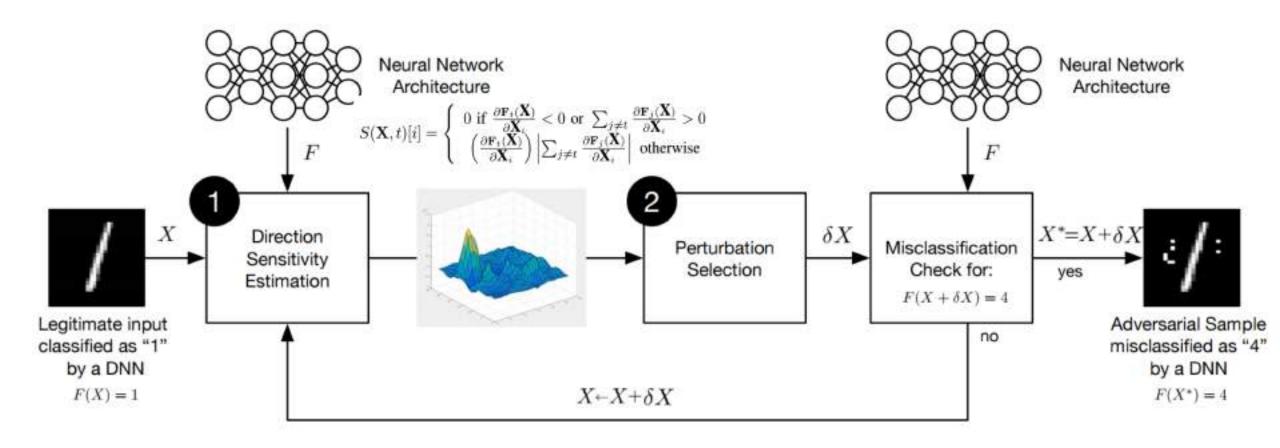
- Local robustness predicate $R^{O}(x, F)$
 - $\forall x' : O(x, x') \Rightarrow (F(x) = F(x'))$
- Global robustness predicate/metric $GR^{O}(F)$
 - $E_{\{x\sim D\}}\left(R^O(x,F)\right)$
- Observation
 - adversarial examples are counterexamples to $GR^{O}(F)$

Instantiating the Oracle

- Ideal
 - O(x, x') = 1 iff a human perceives x and x' as same images
 - Difficulty:
 - We don't completely how human perception works
- What researchers actually use
 - O(x, x') = 1 iff x and x' are close under some norm
 - *L*∞
 - *L*₁
 - $L_p \ (p \ge 2)$

Threat Model

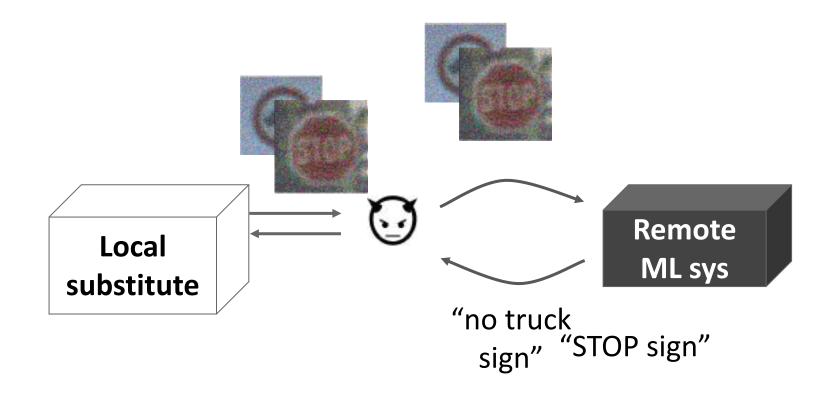
- White Box
 - Complete access to the classifier F
- Black Box
 - Oracle access to the classifier F
 - for a data x receive F(x)
- Grey Box
 - Black-Box + "some other information"
 - Example: structure of the defense


FGSM (white box, misclassification)

- Take a step in the
 - direction of the gradient of the loss function
 - $\delta = \epsilon \operatorname{sign}(\Delta_x l(w, x, F(x)))$
 - Essentially opposite of what SGD step is doing
- Paper
 - Goodfellow, Shlens, Szegedy. Explaining and harnessing adversarial examples.
 ICLR 2015

PGD (white box, misclassification)

- $Proj_{\{B(x,\epsilon)\}}$ (y)
 - Project y to the ball $B(x, \epsilon)$
- Iterate the following step
 - $x_{\{k+1\}} = \operatorname{Proj}_{\{B(x,\epsilon)\}} (x_k + \epsilon \operatorname{sign} \Delta_x l(w, x, F(x)))$
- Intuition:
 - Take a FGSM step, and
 - Project it down to the ball


JSMA (white-box, targeted)

Other Attacks (White-box, targeted)

- Carlini-Wagner (CW)
 - Use optimization engines (i.e. Adam) in a black-box manner
- Athalye-Carlini-Wagner
 - More on this later....
 - Builds on CW

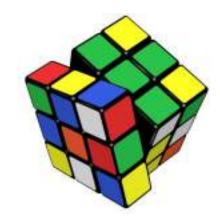
Attacking remotely hosted black-box models

Abstract Algorithm

Choose S (substitute network)

• Interact with the classifier F in a black-box manner

• Train the substitute network *S*


Run white-box attack on S

FM Perspective

- Gradient Free Optimization
 - Black-box Adversarial Attacks with Limited Queries and Information, Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin, ICML 2018
 - Query-Efficient Hard-Label Black-box Attacks: An Optimization-based Approach, Cheng etl al., ICML 2019

- These are very powerful black-box learner
- Problem: Use these in verification

Defense

Robust Defense Has Proved Elusive

Quote

• In a case study, examining noncertified white-box-secure defenses at ICLR 2018, we find obfuscated gradients are a common occurrence, with 7 of 8 defenses relying on obfuscated gradients. Our new attacks successfully circumvent 6 completely and 1 partially.

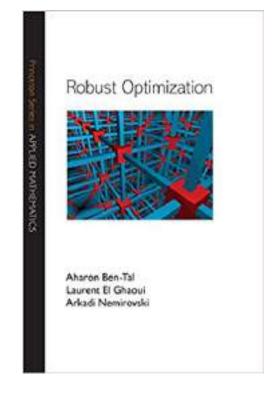
Paper

- Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples.
- Anish Athalye, Nicholas Carlini, and David Wagner, ICML 2018

Certified Defenses

- Robustness predicate $Ro(x, F, \epsilon)$
 - For all $x' \in B(x, \epsilon)$ we have that F(x) = F(x')
- Robustness certificate $RC(x, F, \epsilon) \Rightarrow Ro(x, F, \epsilon)$

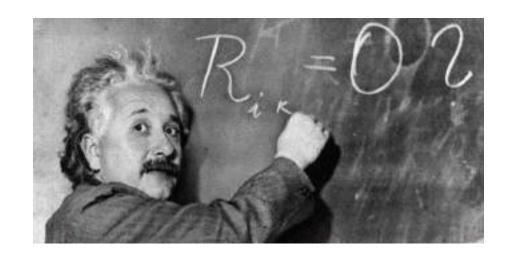
• We should be developing defenses with certified defenses


Semidefinite relaxations for certifying robustness to adversarial examples, Aditi Raghunathan, Jacob Steinhardt and Percy Liang

Verification of DNNs

- Towards Fast Computation of Certified Robustness for ReLU Networks
 - <u>Tsui-Wei Weng</u>, <u>Huan Zhang</u>, <u>Hongge Chen</u>, <u>Zhao Song</u>, <u>Cho-Jui Hsieh</u>, <u>Duane</u>
 <u>Boning</u>, <u>Inderjit S. Dhillon</u>, <u>Luca Daniel</u>, *ICML 2018*
 - Activation function limited to: $f(x) = x^+ = \max(0, x)$
- Follow up of CAV 17 paper by Katz et al.
 - Quote: "... our algorithms are more than 10,000 times faster"
 - Based on spectral techniques
- $F, x \models Ro(x, F, \epsilon)$

Robust Objectives


- Use the following objective
 - $\min_{w} E_{z} \begin{bmatrix} \max_{\{z' \in B(z,\epsilon)\}} & l(w,z') \end{bmatrix}$
 - Outer minimization use SGD
 - Inner maximization use PGD
- A. Madry, A. Makelov, L. Schmidt, D. Tsipras, A. Vladu. Towards Deep Learning Models Resistant to Adversarial Attacks. ICLR 2018
- A. Sinha, H. Namkoong, and J. Duchi. Certifying Some Distributional Robustness with Principled Adversarial Training. ICLR 2018

Adversarial Training

- 1. Train the model naturally (the procedure I described first)
- 2. Adversarial training for each element x_i
 - 1. Run PGD attack from x_i and get z_i (adversarial example)
 - 2. Use natural training on z_i

Note: Using attack technique to make the model more robust *Analogy:* Counterexample guided re-training (refinement?)

Theoretical Explanations

Three Directions (Representative Papers)

Lower Bounds

• A. Fawzi, H. Fawzi, and O. Fawzi. Adversarial Vulnerability for any Classifier.

Sample Complexity

- Analyzing the Robustness of Nearest Neighbors to Adversarial Examples,
 Yizhen Wang, Somesh Jha, Kamalika Chaudhuri, ICML 2018
- Adversarially Robust Generalization Requires More Data. Ludwig Schmidt,
 Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, Aleksander Mądry, ICLR 2018
 - We show that already in a simple natural data model, the sample complexity of robust learning can be significantly larger than that of "standard" learning.

Three Directions (Contd)

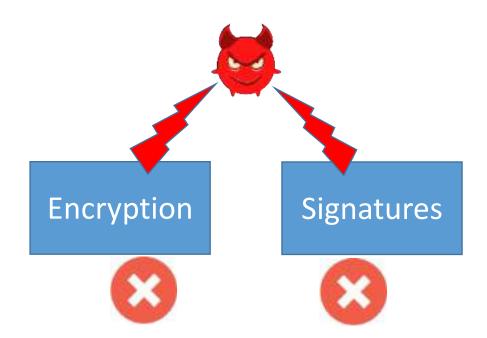
- Computational Complexity
 - Adversarial examples from computational constraints. Sébastien Bubeck, Eric Price, Ilya Razenshteyn, ICML 2019
 - Computational Limitations in Robust Classification and Win-Win Results.
 Akshay Degwekar and Vinod Vaikuntanathan, COLT 2019
- Jury is Still Out!!

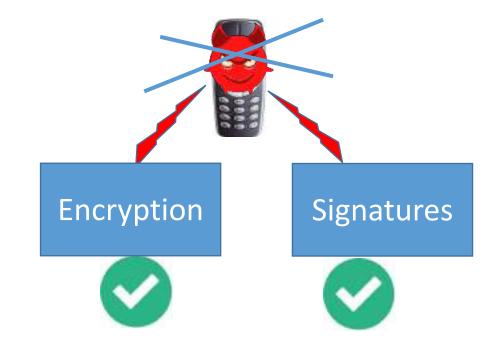
Adversarially Robust Learning Could Leverage Computational Hardness

Sanjam Garg

Somesh Jha

Saeed Mahloujifar Mohammad Mahmoody





Cryptography is based on computational hardness

Information Theoretic Adversary

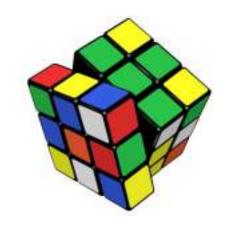
Computationally bounded adversary

We study whether there is any learning task for which it is possible to design classifiers that are only robust against **polynomial-time adversaries**.

We show that computational limitation of attackers can indeed be useful in robust learning by demonstrating a classifier that is **only robust** against **poly-time adversaries**

Can the underlying task be made more natural?

 Can this direction lead to practical/deployable defenses?


Verification, Analysis, Testing

Formal Definition

- Let $O \subseteq X \times X$ be a binary oracle
 - O(x, x') = 1 (examples x and x' "perceived" same)
 - Otherwise 0 (Examples are "perceived" different)
- Local robustness predicate $R^{O}(x, F)$
 - $\forall x' : O(x, x') \Rightarrow (F(x) = F(x'))$
- Global robustness predicate $GR^{O}(F)$
 - $\forall x \ GR^{O}(F)$
- Observation
 - adversarial examples are counterexamples to $GR^{O}(F)$

Decision Procedures

- Decision procedures for verifying local robustness at a point
 - Safety Verification of DNNs, CAV 2017
 - ReLUplex: An Efficient SMT Solver for Verifying DNNs, CAV 2017
 - ...
- Great work, but
 - Scalability (see earlier slide)
 - Not coupled with some of the ML techniques being developed
- Problem
 - Can these decision procedures help in adversarial training?

Analysis/Testing

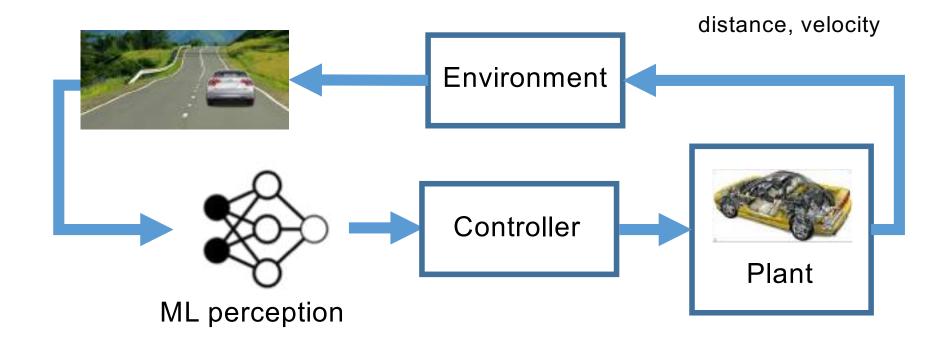
DeepXplore, SOSP 17

 Formal Symbolic Analysis of Neural Networks using Symbolic Intervals, Usenix Security 2018

- AI2: Abstract Interpretation of Neural Networks, Oakland 2018
 - See also follow up work by Isil Dillig's group (PLDI 2019)

- Problem
 - Can these techniques help in adversarial training?

Glaring Omission from AML


- Specification of the system that is using ML
 - Control loop for flying a drone

- Problem
 - Can we do better if we are more "application aware"?
- Good read...
 - Towards Verified Artificial Intelligence, <u>Sanjit A. Seshia</u>, <u>Dorsa Sadigh</u>, <u>S. Shankar Sastry</u>

Automatic Emergency Braking System

Goal: Brake whenever an obstacle is detected

Dreossi, Donze, Seshia, "Compositional Falsification of Cyber-Physical Systems with Machine Learning Components', NFM 2017.

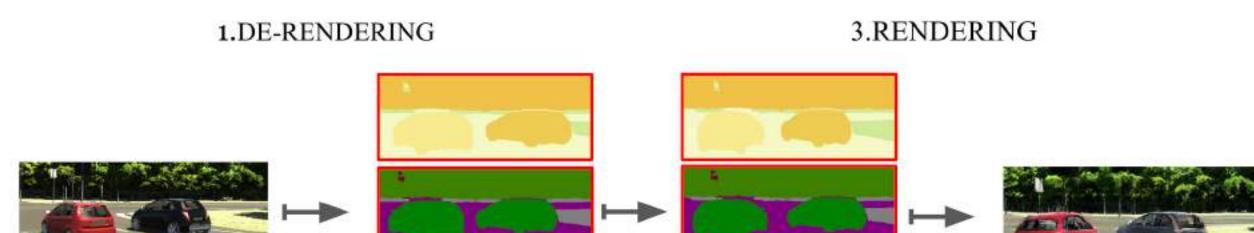
Theme 1


- We allowed only one kind of transformation
 - Add a vector δ
- Allow richer transformations
 - Relevant to the application
 - Translation, cloudy background,
 - Paper
 - A Rotation and Translation Suffice: Fooling CNNs with Simple Transformations
- Problem:
 - Construct adversarial examples given a specification of transformations?

Semantic Adversarial Analysis and Training

DNN analysis must be more *semantic*

- Semantic modification
- System-level specification
- Sematic (re-)training
- Confidence-based analysis



Non-semantic perturbation (i.e., noise)

Semantic perturbation (i.e., translation) 67

2.ATTACK

Generating Semantic Adversarial Examples with Differentiable Rendering Jain et al. (In submission, but on arxiv)

3d-aware scene manipulation via inverse graphics.

INPUT

Yao et al. In Advances in neural information processing systems, 2018.

SEMANTIC

EXAMPLE

ADVERSARIAL

Theme 2

- Problem:
 - Construct adversarial examples that actually lead to system-level failures?
- We can then use these examples for adversarial training
- More on this later...

Semantic Adversarial Analysis and Training

DNN analysis must be more *semantic*

Example: AEBS Counterexamples?

- Semantic modification
- System-level specification
- Sematic (re-)training
- Confidence-based analysis

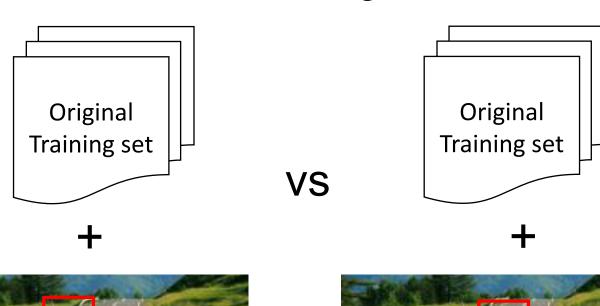
Perception-level spec: "detect cars"

System-level spec: "do not crash"

Does not affect the system

Semantic Adversarial Analysis and Training

DNN analysis must be more semantic


Example: AEBS

Spec: "do not crash"

- Semantic modification
- System-level specification
- Semantic (re-)training
- Confidence-based analysis

Dreossi, Ghosh, Yue, Keutzer, Sangiovanni-Vincentelli, Seshia, "Counterexample-Guided Data Augmentation", IJCAI 2018.

Semantic augmentation

Experimental Results

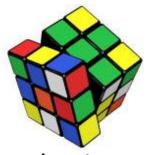
Counterexamples

Train

augmentation

Test

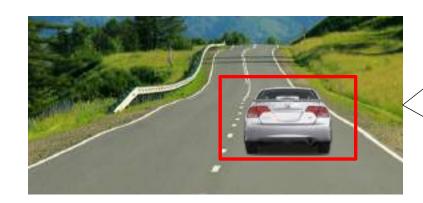
Augmentation methods comparison


Counterexample-guided

	Model	Precision	Recall
	Original	0.61	0.74
	Standard augmentation	0.69	0.80
	Random	0.76	0.87
	Halton	0.79	0.87
	Distance constraint	0.75	0.86

"Counterexample-Guided Data Augmentation", T. Dreossi, S. Ghosh, X. Yue, K. Keutzer, A. Sangiovanni-Vincentelli, S. A. Seshia, JCAL 2018.

Theme 3



- Problem:
 - Can we use ML in a white-box manner to synthesize more resilient controllers?
- Some evidence that using confidence measure (i.e. output of softmax layer) can help
 - <u>Reinforcing Adversarial Robustness using Model Confidence Induced by Adversarial Training</u>, Xi Wu, Uyeong Jang, Jiefeng Chen, Lingjiao Chen, Somesh Jha, ICML 2018

Semantic Adversarial Analysis and Training

DNN analysis must be more *semantic*

- Semantic modification
- System-level specification
- Semantic (re-)training
- Confidence-based analysis

Prediction: car 49 %

Example: AEBS Spec: "do not crash"

AEBS (threshold 50%)

No car Keep going

VS

AEBS (confidence analysis)

Maybe car...

Better slow down

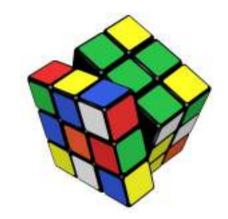
Theme 3

• Problem:

• Can we generate adversarial examples that matter (i.e. cause system-level failure)?

T. Dreossi, A. Donze, and S. A. Seshia. *Compositional Falsification of Cyber-Physical Systems with Machine Learning Components*, In NASA Formal Methods Symposium, May 2017.

Compositional Falsification


Statement

given a formal specification ϕ (say in a formalism such as signal temporal logic) and a CPS+ML model M,

find an input for which M does not satisfy φ .

Problem:

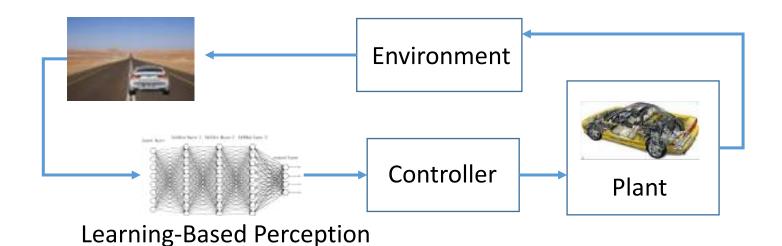
How do handle the ML component?

Obvious Strategies

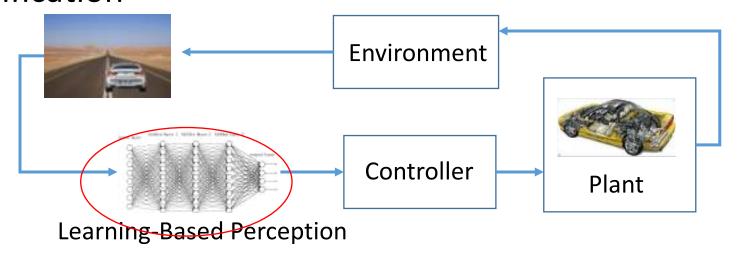
- Treat ML component as any other component and
 - Let "abstraction refinement" handle it
 - Will it work?

- DNN models are constantly getting bigger (>= 20 million parameters)
- Some folks are talking about a billion parameters
- Use adversarial example generator as a "black box"
- X

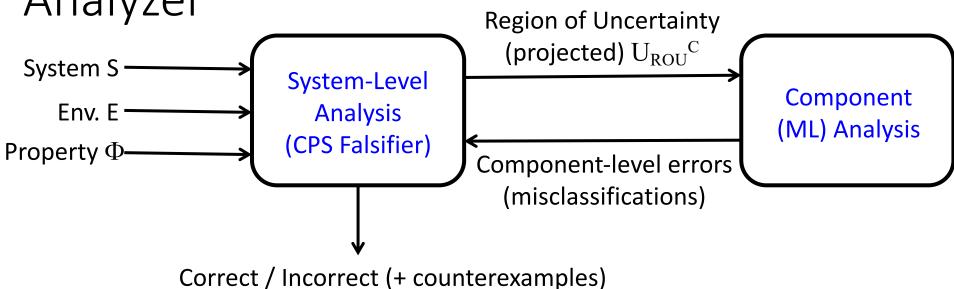
- Will it work?
 - Will generate lot of examples that won't falsify the system
 - Density of "spurious" adversarial examples is too large
 - This is a conjecture!!!


Our Approach: Use a System-Level Specification

"Verify the System containing the Deep Neural Network"

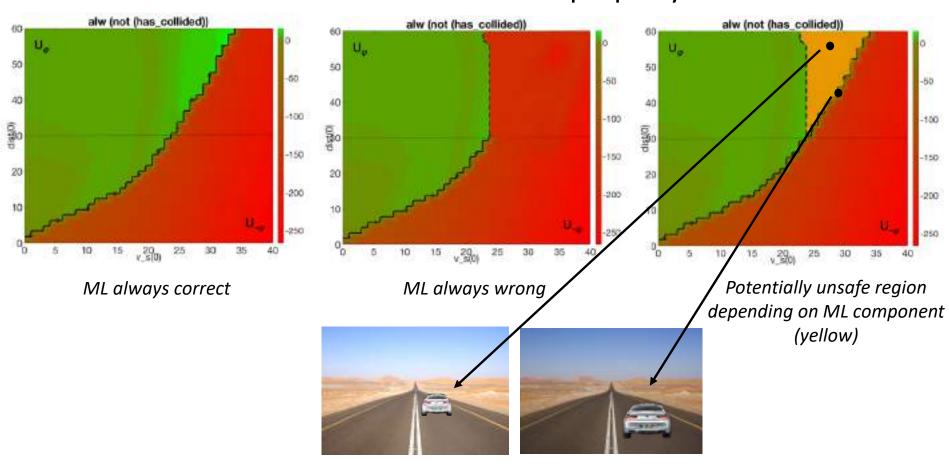

Formally Specify the End-to-End Behavior of the System

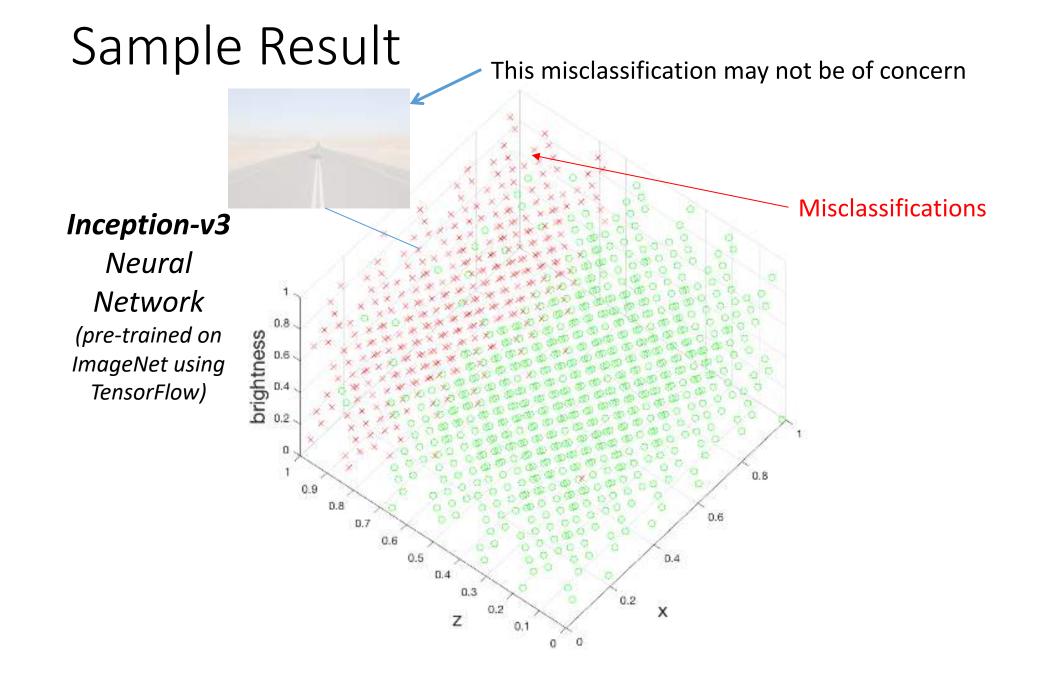
Temporal Logic: **G** (*dist*(ego vehicle, env object) $> \Delta$)


Compositional Falsification

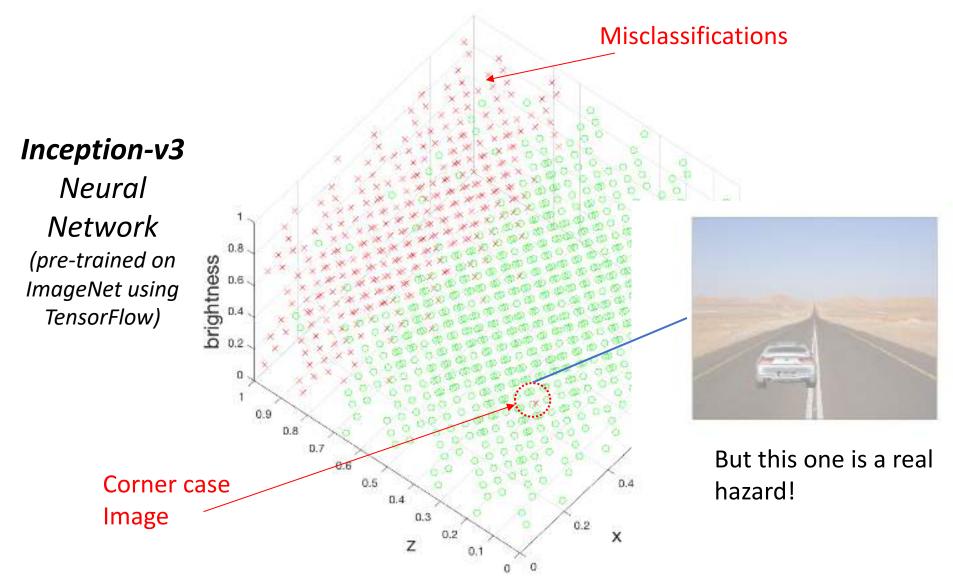
- Challenge: Very High Dimensionality of Input Space!
- Standard solution: Use Compositional (Modular)
 Verification

- However: *no formal spec*. for neural network component!
- Compositional Verification without Compositional Specification?!!


Compositional Approach: Combine Temporal Logic CPS Falsifier with ML Analyzer



- CPS Falsifier uses abstraction of ML component
 - Optimistic analysis: assume ML classifier is always correct
 - Pessimistic analysis: assume classifier is always wrong
- Difference is the region of uncertainty where output of the ML component "matters"


Identifying Region of Uncertainty (*ROU*) for Automatic Emergency Braking System

Green \rightarrow environments where the property is satisfied

Sample Result

Theme 4 (*)

• Problem:

Can we use the specification to modify the loss function?

Intuition

- Steer the ML model towards correcting mis-classifications that cause systemlevel failure?
- Initial results, but inconclusive!
 - Trained with hinge loss
 - Does reduce the impact of the collision

Future

Exciting Area

Several problems mentioned during the talk

- Get involved
 - Several workshops coming up
 - Don't ignore the email invitations ©
- Release benchmarks!
 - https://www.robust-ml.org/
 - https://github.com/tensorflow/cleverhans

Get involved!

https://github.com/tensorflow/cleverhans

