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Plan

e Part | [Adversarial ML] ~25mins
» Different types of attacks
* Test-time attacks
e Defenses
* Theoretical explorations

e Part Il [Opportunities in FM] ~Rest of the talk
* Opportunities for FM researchers
* Focus on lot of work by Tommaso and Sanjit



Announcements/Caveats ﬁi)

* Please ask questions during the talk T
+ If we don’t finish, fine® ()

‘Let The Buyer Beware!

e More slides than | can cover
* Lot of skipping will be going on

* Fast moving area
* Apologies if | don’t mention your paper

* Legend Q




Machine learning brings social disruption at scale
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ML reached “human-level performance” on
many 1D tasks circa 2013

...recognizing objects
and faces....

i 9
£

(Szegedy et al, 2014) | (aigmen et al, 2613)

[ YD X1 ] Privacy & Terms

...solving CAPTCHAS and
reading addresses...

o2/

(Goodfellow et al, 2013) (Goodfellow et al, 2013)




ML beating doctors©

* NOVEMBER 15, 2017

e Stanford algorithm can diagnose pneumonia better than radiologists

* April 14, 2017

 Self-taught artificial intelligence beats doctors at predicting heart attacks




Machine learning is deployed in adversarial
settings
@TayTweets Om

@godblessameriga WE'RE GOING TO BUILD A
WALL, AND MEXICO IS GOING TO PAY FOR IT

VMickey Mouse Baby Is in Trouble When Hiding In a

Microsoft’s Tay chatbot

Training data poisoning

YouTube filtering

Content evades detection at inference



ML in CPS

Artificial Intelligence based systems for automotive
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.1.D. Machine Learning

I: Independent

I: Identically
D: Distributed

All train and test examples
drawn independently from

same distribution




Security Requires Moving Beyond I.1.D.

. Not identical: attackers can use
unusual inputs

(Eykholt et al, CVPR 2017)
- Not independent: attacker can repeatedly send a single
mistake (“test set attack”)
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Adversarial Learning is not new!!

* lowd: | spent the summer of 2004 at Microsoft Research working
with Chris Meek on the problem of spam.

* We looked at a common technique spammers use to defeat filters: adding
"good words" to their emails.

* We developed techniques for evaluating the robustness of spam filters, as
well as a theoretical framework for the general problem of learning to defeat
a classifier (Lowd and Meek, 2005)

* But...

* New resurgence in ML and hence new problems

* Lot of new theoretical techniques being developed
* High dimensional robust statistics, robust optimization, ...

11



Attacks on the machine learning pipeline

Parameter Tampering Attack

Training set

poisoning Adversarial Examples Model theft

12



ML (Basics)

e Supervised learning

* Entities
* (Sample Space) Z = X XY
* (data, label) (x,y)

e (Distribution over ) D
* (Hypothesis Space) H

* (loss function) l: (HXZ) - R



ML (Basics)

e Learner’s problem

* Find w € H that minimizes
* Eqzepy l((w,z) + AR(w)
. i Zm l(W; (xi'yi)) +AR(W)
m 2(i=1}

* Sample set S = {(x1, V1), «) Gty Vim ) }
 Stochastic Gradient Descent (SGD)
* (iteration) w[t + 1] = wlt] —nl"(wWlt], (xg,3 yi,0)
* (learning rate) n;



ML (Basics)

* After Training
e E X oY

* Fy(x) = argmax s(Fy)(x)

* (softmax layer) s(F,,)

* Sometimes we will write E,, simply as F
« w will be implicit



Training Time Attack



Attacks on the machine learning pipeline

Parameter Tampering Attack

Training set

poisoning Adversarial Examples Model theft
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Lake Mendota Ice Days
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ICE DAYS

Poisoning Attacks
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Formalization

Robust Statistics

Second Editon

* Alice picks a data set S of size m
* Alice gives the data set to Bob
* Bob picks

* € m points S St 1 ks
* Gives the data set S U SZ back to Alice i
* Or could replace some pointsin S

e Goal of Bob

* Maximize the error for Alice

* Goal of Alice
* Get close to learning from clean data




Representative Papers

* Being Robust (in High Dimensions) Can be Practical
|. Diakonikolas, G. Kamath, D. Kane, J. Li, A. Moitra, A. Stewart
ICML 2017

 Certified Defenses for Data Poisoning Attacks. Jacob Steinhardt, Pang Wei
Koh, Percy Liang. NIPS 2017

 Scott Alfeld, Xiaojin Zhu, and Paul Barford. Explicit defense actions against
test-set attacks. AAAI 2017

* Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks,
NIPS 18



Model Extraction/Theft Attack



Attacks on the machine learning pipeline

Parameter Tampering Attack

Training set

poisoning Adversarial Examples Model theft



Model Theft

* Model theft: extract model parameters by queries
(intellectual property theft)
* Given a classifier F
* Query F on q4, ..., q,, and learn a classifier G

e F =G

* Goals: leverage active learning literature to
develop new attacks and preventive techniques

* Papers:

e Stealing Machine Learning Models using Prediction APIs, Tramer et al., Usenix
Security 2016

* Exploring Connections Between Active Learning and Model Extraction,
Chandrasekaran et al, Usenix Security 2020



Fake-News Attacks




Fake News Attacks °

Abusive use of machine learning:

Using GANSs to generate fake content (a.k.a deep
fakes)

Strong societal implications:

elections, automated trolling, court

evidence ... Generative media:

e Video of Obama saying things he
never said, ...

e Automated reviews, tweets,
comments, indistinguishable from
human-generated content 26




Obama Fake Video




® ey
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Test-time Attacks



Attacks on the machine learning pipeline

Parameter Tampering Attack

Training set

poisoning Adversarial Examples Model theft
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Definition

“Adversarial examples are inputs to
machine learning models that an attacker
has intentionally designed to cause the
model to make a mistake”

(Goodfellow et al 2017)




What if the adversary systematically found
these inputs?
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Good models make surprising
mistakes in non-lID setting

“Adversarial examples”

Schoolbus Perturbation

(rescaled for visualization)

(Szegedy et al, 2013)

Ostrich

32



dversarial Examples

99% guacamole



Don’t Bring Your Turtle to a Gun Fight
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Adversarial examples...

... beyond deep learning

Logistic Regression Nearest Neighbors

Support Vector Machines Decision Trees

... beyond computer vision

P[X=Malware] = 0.90
P[X=Benign] = 0.10

l‘ = ® P[X*=Malware] = 0.10
T S g P[X*=Benign] = 0.90

SIS AN |

35



Formal Definition (Local Robustness)

* Let 0 € XXX be abinary oracle .
* O(x,x") =1 (examples x and x’ “perceived” same) _

e Otherwise 0 (Examples are “perceived” different)

» Targeted local robustness TR? (x, F, t)
e Vx': O(x,x")=>=(F(x'))=1t)

* Global targeted robustness predicate/metric GTRY (F, t)
* E¢x-py (TR? (x,F, t))

* Observation
* Targeted adversarial examples are counterexamples to GTRY (F, t)

36



Global Robustness

* Local robustness predicate R® (x, F)
e Vx': O(x,x")=> (F(x) =F(x"))

* Global robustness predicate/metric GR? (F)
* Ege~py (R?(x, F))

* Observation
« adversarial examples are counterexamples to GR? (F)

37



Instantiating the Oracle

e [deal

* O(x,x") = 1iff ahuman perceives x and x'as same images
* Difficulty:
* We don’t completely how human perception works®
* What researchers actually use

e O(x,x") = 1iff x and x" are close under some norm
° Loo

* L,(p=2)



Threat Model

* White Box
* Complete access to the classifier F

e Black Box

* Oracle access to the classifier F
* for a data x receive F(x)

* Grey Box
e Black-Box + “some other information”
* Example: structure of the defense

39



FGSM (white box, misclassification)

* Take a step in the
* direction of the gradient of the loss function

« § = e sign(Ay L(w, x, F(x)))
* Essentially opposite of what SGD step is doing
* Paper

* Goodfellow, Shlens, Szegedy. Explaining and harnessing adversarial examples.
ICLR 2015



PGD (white box, misclassification)

° PI‘Oj{B (x,€)} (Y)
* Project y to the ball B(x, €)

* |[terate the following step
* Xk+1} = Projipxen (xx + € sign A, l(w, x,F(x)))

* |ntuition:
* Take a FGSM step, and
* Project it down to the ball



JSMA (white-box, targeted)

Neural Network
Architecture

if FiX)

/

— 4>

Direction
Sensitivity
Estimation
Legitimate input
classified as “1”
by a DNN
F(X)=1

!iF.i:Xn =<

SO0 SR>

1]
S(x.i'(.‘ — - A : ?
\ | rl‘lik l ,;F“.‘X -~
F { ( 'T;Y"'} ISJM E 77l otherwise

{

Perturbation
Selection

Neural Network
Architecture

0 X ; ,
) Misclassification
Check for:
FIX+46X)=4
=3 Agiversarligl Sample
misclassified as “4"
by a DNN
F(X*)=4

[ The Limitations of Deep Learning in Adversarial Settings [IEEE EuroS&P 2016]

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and Ananthram Swami

) .




Other Attacks (White-box, targeted)

o Carlini-Wagner (CW)

o Use optimization engines (i.e. Adam) in a black-box manner

o Athalye-Carlini-Wagner
o More on this later....

o Builds on CW



Attacking remotely hosted black-box models

Remote
ML sys

Local
substitute

Practical Black-Box Attacks against Machine Learning [AsiaCCS 2017]
Nicolas Papernot, Patrick McDaniel, lan Goodfellow, Somesh Jha, Z.Berkay Celik, and Ananthram Swami




Abstract Algorithm

* Choose S (substitute network)
* Interact with the classifier F in a black-box manner

* Train the substitute network S

e Run white-box attack on S

45



FM Perspective

 Gradient Free Optimization

* Black-box Adversarial Attacks with Limited Queries and Information, Andrew
llyas, Logan Engstrom, Anish Athalye, and Jessy Lin, ICML 2018

* Query-Efficient Hard-Label Black-box Attacks: An Optimization-based
Approach, Cheng etl al., ICML 2019

* These are very powerful black-box learner
* Problem: Use these in verification



https://arxiv.org/abs/1804.08598

Defense

47



Robust Defense Has Proved Elusive

* Quote

* In a case study, examining noncertified white-box-secure defenses at ICLR
2018, we find obfuscated gradients are a common occurrence, with 7 of 8
defenses relying on obfuscated gradients. Our new attacks successfully
circumvent 6 completely and 1 partially.

* Paper

* Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses
to Adversarial Examples.

* Anish Athalye, Nicholas Carlini, and David Wagner, ICML 2018 ]

48



Certified Defenses

* Robustness predicate Ro(x, F, €)
* Forallx' € B(x,e) we havethat F(x) = F(x")

* Robustness certificate RC(x,F,€) = Ro(x, F, €)

* We should be developing defenses with certified defenses

Semidefinite relaxations for certifying robustness to adversarial
examples , Aditi Raghunathan, Jacob Steinhardt and Percy Liang

44


https://arxiv.org/pdf/1811.01057.pdf
http://cs.stanford.edu/~jsteinhardt/
https://cs.stanford.edu/~pliang/

Verification of DNNs

* Towards Fast Computation of Certified Robustness for ReLU
Networks

e Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Duane

Boning, Inderjit S. Dhillon, Luca Daniel, ICML 2018
e Activation function limited to: f(x) = x* = max(0, x)

* Follow up of CAV 17 paper by Katz et al.

* Quote: “... our algorithms are more than 10,000 times faster”
* Based on spectral techniques

* F,x ERo(x,F,e€)

50


https://arxiv.org/search?searchtype=author&query=Weng,+T
https://arxiv.org/search?searchtype=author&query=Zhang,+H
https://arxiv.org/search?searchtype=author&query=Chen,+H
https://arxiv.org/search?searchtype=author&query=Song,+Z
https://arxiv.org/search?searchtype=author&query=Hsieh,+C
https://arxiv.org/search?searchtype=author&query=Boning,+D
https://arxiv.org/search?searchtype=author&query=Dhillon,+I+S
https://arxiv.org/search?searchtype=author&query=Daniel,+L

Robust Optimization

Robust Objectives

e Use the following objective

* min E, [{z’gl_}?%;(,e)} l(w,z)]

 Quter minimization use SGD
* Inner maximization use PGD

* A. Madry, A. Makelov, L. Schmidt, D. Tsipras, A. Vladu. Towards Deep
Learning Models Resistant to Adversarial Attacks. ICLR 2018

* A. Sinha, H. Namkoong, and J. Duchi. Certifying Some Distributional
Robustness with Principled Adversarial Training. ICLR 2018

Aharon Ben.Tal
Laurent B Ghaoui
Arkad Nemirowihi

51



Adversarial Training

1. Train the model naturally (the procedure | described first)

2. Adversarial training for each element x;

1. Run PGD attack from x; and get z; (adversarial example)
2. Use natural training on z;

Note: Using attack technique to make the model more robust
Analogy: Counterexample guided re-training (refinement?)



Theoretical Explanations



Three Directions (Representative Papers)

* Lower Bounds
* A. Fawzi, H. Fawzi, and O. Fawzi. Adversarial Vulnerability for any Classifier.

 Sample Complexity
* Analyzing the Robustness of Nearest Neighbors to Adversarial Examples,
Yizhen Wang, Somesh Jha, Kamalika Chaudhuri, ICML 2018

* Adversarially Robust Generalization Requires More Data. Ludwig Schmidt,
Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, Aleksander Madry, ICLR 2018

 We show that already in a simple natural data model, the sample complexity of robust
learning can be significantly larger than that of "standard" learning.



Three Directions (Contd)

 Computational Complexity

* Adversarial examples from computational constraints. Sébastien Bubeck, Eric
Price, llya Razenshteyn, ICML 2019

 Computational Limitations in Robust Classification and Win-Win Results.
Akshay Degwekar and Vinod Vaikuntanathan, COLT 2019

* Jury is Still Out!!



Adversarially Robust Learning
Could Leverage Computational
Hardness

Sanjam Garg Somesh Jha Saeed Mahloujifar Mohammad Mahmoody



https://arxiv.org/search/cs?searchtype=author&query=Garg,+S
https://arxiv.org/search/cs?searchtype=author&query=Jha,+S
https://arxiv.org/search/cs?searchtype=author&query=Mahloujifar,+S
https://arxiv.org/search/cs?searchtype=author&query=Mahmoody,+M

Cryptography is based on computational hardness

Information Theoretic Adversary

Signatures

Computationally bounded adversary

B

Signatures

&@



We study whether there is any learning task for
which it is possible to design classifiers that are
only robust against polynomial-time adversaries.

We show that computational limitation of attackers can
indeed be useful in robust learning by demonstrating a
classifier that is only robust against poly-time
adversaries




Several Interesting Directions/Questions

* Can the underlying task be made more natural?

* Can this direction lead to practical/deployable
defenses?



Verification, Analysis, Testing



Formal Definition

e Let O € XXX be abinary oracle

* 0(x,x') =1 (examples x and x’ “perceived” same)
e Otherwise O (Examples are “perceived” different)

* Local robustness predicate R (x, F)
* Vx': O(x,x") = (F(x) =F(x")

* Global robustness predicate GRC (F)
* Vx GRP(F)
* Observation
* adversarial examples are counterexamples to GR® (F)

61



Decision Procedures

* Decision procedures for verifying local robustness at a point
» Safety Verification of DNNs, CAV 2017
* ReLUplex: An Efficient SMT Solver for Verifying DNNs, CAV 2017

* Great work, but
 Scalability (see earlier slide)
* Not coupled with some of the ML techniques being developed

* Problem
* Can these decision procedures help in adversarial training?




Analysis/Testing
* DeepXplore, SOSP 17

* Formal Symbolic Analysis of Neural Networks using Symbolic
Intervals, Usenix Security 2018

* Al2: Abstract Interpretation of Neural Networks, Oakland 2018
 See also follow up work by Isil Dillig’s group (PLDI 2019)

* Problem
* Can these techniques help in adversarial training?

63



Glaring Omission from AML

* Specification of the system that is using ML
* Control loop for flying a drone

* Problem
* Can we do better if we are more “application aware”?

 Good read...

* Towards Verified Artificial Intelligence, Sanjit A. Seshia, Dorsa Sadigh, S.
Shankar Sastry

64


https://arxiv.org/search?searchtype=author&query=Seshia,+S+A
https://arxiv.org/search?searchtype=author&query=Sadigh,+D
https://arxiv.org/search?searchtype=author&query=Sastry,+S+S

Automatic Emergency Braking System

- Goal: Brake whenever an obstacle is detected

Environment
Controller

Dreossi, Donze, Seshia, “Compositional Falsification of Cyber-Physical Systems with Machine Learning Components’, NFM 2017.

distance, velocity

ML perception



Theme 1

* We allowed only one kind of transformation
e Add a vector 6

* Allow richer transformations
e Relevant to the application
* Translation, cloudy background, .....
* Paper
* A Rotation and Translation Suffice: Fooling CNNs with Simple Transformations
* Problem:
* Construct adversarial examples given a specification of transformations?




Semantic Adversarial Analysis and Training

DNN analysis must be more semantic

« Semantic modification
+ 007 x

“panda” “nematode” “gibbon™
57.7% confidence 8.2% confidence 99.3 % confidence

Non-semantic perturbation (i.e., noise)

Semantic perturbation (i.e., translation) ¢’



1.DE-RENDERING 3.RENDERING

SEMANTIC

ADVERSARIAL
2.ATTACK EXAMPLE

Generating Semantic Adversarial Examples with Differentiable Rendering
Jain et al. (In submission, but on arxiv)

3d-aware scene manipulation via inverse graphics.
Yao et al. In Advances in neural information processing systems, 2018.
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Theme 2

* Problem:
* Construct adversarial examples that actually lead to system-level failures?

* We can then use these examples for adversarial training
* More on this later...

69



Semantic Adversarial Analysis and Training

DNN analysis must be more semantic Example: AEBS
Counterexamples?

Semantic modification
System-level specification

Perception-level spec:
“detect cars”

System-level spec:
“do not crash”

Does not affect the system



Semantic Adversarial Analysis and Training
Example: AEBS

DNN analysis must be more semantic

Semantic modification
System-level specification
Semantic (re-)training

Dreossi, Ghosh, Yue, Keutzer, Sangiovanni-
Vincentelli, Seshia, “Counterexample-
Guided Data Augmentation”, IJCAI 2018.

Spec: “do not crash”

Semantic augmentation

Original
Training set

VS

Original
Training set




Experimental Results Counterexamples

« Augmentation methods comparison

|

Original

Standard
. 0.69

augmentation

Random 0.76
Counterexample-guided | Halton 0.79

augmentation St e
. 0.75

constraint

“Counterexample-Guided Data Augmentation”, T. Dreossi, S. Ghosh, X. Yue, K. Keutzer,

A. Sangiovanni-Vincentelli, S. A. Seshia,dJCAF2018.

0.80

0.87
0.87

0.86
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Theme 3

* Problem:
* Can we use ML in a white-box manner to synthesize more resilient controllers?

* Some evidence that using confidence measure (i.e. output of softmax
layer) can help

* Reinforcing Adversarial Robustness using Model Confidence Induced by
Adversarial Training, Xi Wu, Uyeong Jang, Jiefeng Chen, Lingjiao Chen,
Somesh Jha, ICML 2018

73


http://andrewxiwu.github.io/public/papers/2018/WUCCJ18-confidence.pdf

Semantic Adversarial Analysis and Training

DNN analysis must be more semantic

Semantic modification
System-level specification
Semantic (re-)training
Confidence-based analysis

Prediction: car 49 %

Example: AEBS
Spec: “do not crash”

-

-

AEBS
(threshold 50%)

~

)

o

AEBS
(confidence
analysis)

)

No car
Keep going

VS

Maybe car...
Better slow down
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Theme 3

* Problem:

e Can we generate adversarial examples that matter (i.e. cause system-level
failure)?

T. Dreossi, A. Donze, and S. A. Seshia. Compositional
Falsification of Cyber-Physical Systems with Machine Learning
Components, In NASA Formal Methods Symposium, May 2017.
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Compositional Falsification

Statement

given a formal specification ¢ (say in a formalism such as signal
temporal logic) and a CPS+ML model M,

find an input for which M does not satisfy .

Problem:

How do handle the ML component?
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Obvious Strategies

* Treat ML component as any other component and

e Let “abstraction refinement” handle it

* Will it work?
* DNN models are constantly getting bigger (>= 20 million parameters)
* Some folks are talking about a billion parameters

* Use adversarial example generator as a “black box” .

* Will it work?
* Will generate lot of examples that won’t falsify the system

* Density of “spurious” adversarial examples is too large
* Thisis a conjecture!!!
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Our Approach: Use a System-Level
Specification
X “Verify the Deep Neural Network Object Detector”

J “Verify the System containing the Deep Neural Network”

Formally Specify the End-to-End Behavior of the System

Temporal Logic: G (dist(ego vehicle, env object) > A)

T— )
ﬁ < Environment

" . ':l‘.-: “At:
> %s,} ss{ —— Controller
s (e G

Learning-Based Perception
78



Compositional Falsification

e Challenge: Very High Dimensionality of Input Space!

e Standard solution: Use Compositional (Modular)
Verification

Environment

Controller

Learni erception

e However: no formal spec. for neural network
component!

e Compositional Verification without Compositional

Specification?!!
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Compositional Approach: Combine
Temporal Logic CPS Falsifier with ML

Analyzer
System S ->
Env. E ->
Property @ >

r

\

System-Level
Analysis
(CPS Falsifier)

~

Region of Uncertainty

(projected) Ugou©

‘>

r

€

J

l

Component-level errors

(misclassifications)

Correct / Incorrect (+ counterexamples)

e CPS Falsifier uses abstraction of ML component
e Optimistic analysis: assume ML classifier is always correct
e Pessimistic analysis: assume classifier is always wrong

\

Component
(ML) Analysis

~

J

* Difference is the region of uncertainty where output of the ML
component “matters”



|dentifying Region of Uncertainty (ROU)
for Automatic Emergency Braking System

Green =2 environments where the property is satisfied

alw as_collidad))

alw {not (has_colli o alw (not (has_collided))

1 15 : s 30 as 3
Q &S Js[?m 25 40

0 15 2q. 25 36 P
% 5«2 v B % 20, 2 0 3 40

Potentially unsafe region
depending on ML component
(vellow)

ML always correct ML always wrong
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Sa m p ‘ e ReS U |t This misclassification may not be of concern

Inception-v3
Neural

Network
(pre-trained on

ImageNet using
TensorFlow)

brightness

=
o

-t .0

D&

0.8

Misclassifications



Sample Result

Misclassifications

Inception-v3
Neural

Network
(pre-trained on
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Theme 4 (*)

* Problem:
* Can we use the specification to modify the loss function?

* Intuition

e Steer the ML model towards correcting mis-classifications that cause system-
level failure?

* |nitial results, but inconclusive!
* Trained with hinge loss
* Does reduce the impact of the collision
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Future



Exciting Area

* Several problems mentioned during the talk

* Get involved
* Several workshops coming up
* Don’t ignore the email invitations ©

e Release benchmarks!
e https://www.robust-ml.org/
* https://github.com/tensorflow/cleverhans
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https://www.robust-ml.org/

Get involved!

https://github.com/tensorflow/cleverhans
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