
Towards Semantic 
Adversarial Examples

Somesh Jha 
Oct 10, 2019

SAS 2019
Thanks to Nicolas Papernot, Ian Goodfellow and Jerry Zhu

for some slides.

Joint work with Tommaso Dreossi and Sanjit Seshia (Berkeley)

1



Plan

• Part I [Adversarial ML] ~25mins
• Different types of attacks
• Test-time attacks
• Defenses
• Theoretical explorations

• Part II [Opportunities in FM] ~Rest of the talk
• Opportunities for FM researchers
• Focus on lot of work by Tommaso and Sanjit
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Announcements/Caveats

• Please ask questions during the talk
• If we don’t finish, fineJ

• More slides than I can cover
• Lot of skipping will be going on

• Fast moving area
• Apologies if I don’t mention your paper

• Legend
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Machine learning brings social disruption at scale
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Healthcare
Source: Peng and Gulshan (2017)

Education
Source: Gradescope

Transportation
Source: Google

Energy
Source: Deepmind



ML reached “human-level performance”  on 
many IID tasks circa 2013

...solving CAPTCHAS and  
reading addresses...

...recognizing objects  
and faces….

(Szegedy et al, 2014)

(Goodfellow et al, 2013)

(Taigmen et al, 2013)

(Goodfellow et al, 2013)
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ML beating doctorsJ

• NOVEMBER 15, 2017
• Stanford algorithm can diagnose pneumonia better than radiologists

• April 14, 2017
• Self-taught artificial intelligence beats doctors at predicting heart attacks

• ….
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Machine learning is deployed in adversarial 
settings
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YouTube filtering

Content evades detection at inference

Microsoft’s Tay chatbot

Training data poisoning



ML in CPS

S. A. Seshia 8

Many Safety-Critical Systems



I.I.D. Machine Learning
Train Test I: Independent  

I: Identically  
D: Distributed

All train and test examples  
drawn independently from  
same distribution
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Security Requires Moving  Beyond I.I.D.
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• Not identical: attackers can use 
unusual inputs

(Eykholt et al, CVPR 2017)
• Not independent: attacker can repeatedly send a single 

mistake (“test  set attack”)



Adversarial Learning is not new!!

• Lowd: I spent the summer of 2004 at Microsoft Research working 
with Chris Meek on the problem of spam. 

• We looked at a common technique spammers use to defeat filters: adding 
"good words" to their emails. 

• We developed techniques for evaluating the robustness of spam filters, as 
well as a theoretical framework for the general problem of learning to defeat 
a classifier (Lowd and Meek, 2005)

• But…
• New resurgence in ML and hence new problems
• Lot of new theoretical techniques being developed 

• High dimensional robust statistics, robust optimization, …
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Attacks on the machine  learning pipeline

✓
Learning algorithm

Test input
Test output

X
Training data  
Training set

poisoning
Model theftAdversarial Examples

y
Learned Parameters
Parameter Tampering Attack
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ML (Basics)

• Supervised learning 
• Entities

• (Sample Space) 𝑍 = 𝑋×𝑌
• (data, label) 𝑥, 𝑦

• (Distribution over 𝑍 ) 𝐷

• (Hypothesis Space) 𝐻

• (loss function) 𝑙: 𝐻×𝑍 → 𝑅
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ML (Basics)

• Learner’s problem 
• Find 𝑤 ∈ 𝐻 that minimizes

• 𝐸 2∼4 𝑙 𝑤, 𝑧 + 𝜆 𝑅 𝑤

• 8
9
∑ ;<8
9 𝑙 𝑤, 𝑥;, 𝑦; + 𝜆 𝑅(𝑤)

• Sample set 𝑆 = { 𝑥8, 𝑦8 , … , 𝑥9, 𝑦9 }
• Stochastic Gradient Descent (SGD)

• (iteration) 𝑤 𝑡 + 1 = 𝑤 𝑡 − 𝜂G𝑙H(𝑤 𝑡 , (𝑥 ;I , 𝑦 ;I )
• (learning rate) 𝜂G
• …
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ML (Basics)

• After Training
• 𝐹K: 𝑋 → 𝑌

• 𝐹K(𝑥) = argmax
Q∈R

𝑠 𝐹K (𝑥)

• (softmax layer) 𝑠(𝐹K)

• Sometimes we will write 𝐹K simply as 𝐹
• 𝑤 will be implicit
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Training Time Attack
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Attacks on the machine  learning pipeline

✓
Learning algorithm

Test input
Test output

X
Training data  
Training set

poisoning
Model theftAdversarial Examples

y
Learned Parameters
Parameter Tampering Attack
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Poisoning Attacks 
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Formalization

• Alice picks a data set 𝑆 of size 𝑚
• Alice gives the data set to Bob
• Bob picks 

• 𝜖 𝑚 points 𝑆V
• Gives the data set 𝑆 ∪ 𝑆V back to Alice
• Or could replace some points in 𝑆

• Goal of Bob
• Maximize the error for Alice

• Goal of Alice
• Get close to learning from clean data
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Representative Papers

• Being Robust (in High Dimensions) Can be Practical
I. Diakonikolas, G. Kamath, D. Kane, J. Li, A. Moitra, A. Stewart
ICML 2017

• Certified Defenses for Data Poisoning Attacks. Jacob Steinhardt, Pang Wei 
Koh, Percy Liang. NIPS 2017

• Scott Alfeld, Xiaojin Zhu, and Paul Barford. Explicit defense actions against 
test-set attacks. AAAI 2017

• Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks, 
NIPS 18

• …
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Model Extraction/Theft Attack
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Attacks on the machine  learning pipeline

✓
Learning algorithm

Test input
Test output

X
Training data  
Training set

poisoning
Model theftAdversarial Examples

y
Learned Parameters
Parameter Tampering Attack
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Model Theft
• Model theft:  extract model parameters by queries

(intellectual property theft) 
• Given a classifier 𝐹
• Query 𝐹 on 𝑞8, … , 𝑞Y and learn a classifier 𝐺
• 𝐹 ≈ 𝐺

• Goals:   leverage active learning literature to
develop new attacks and preventive techniques

• Papers: 
• Stealing Machine Learning Models using Prediction APIs, Tramer et al., Usenix

Security 2016
• Exploring Connections Between Active Learning and Model Extraction, 

Chandrasekaran et al, Usenix Security 2020
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Fake-News Attacks 
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Fake News Attacks

Using GANs to generate fake content (a.k.a deep 
fakes)
Strong societal implications:

elections,   automated trolling,  court 
evidence … Generative media:

● Video of Obama saying things he 
never said,  ...

● Automated reviews, tweets, 
comments, indistinguishable from 
human-generated content

Abusive use of machine learning:

9
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Obama Fake Video
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Test-time Attacks
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Attacks on the machine  learning pipeline

✓
Learning algorithm

Test input
Test output

X
Training data  
Training set

poisoning
Model theftAdversarial Examples

y
Learned Parameters
Parameter Tampering Attack
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Definition
“Adversarial examples are inputs to  
machine learning models that an  attacker 
has intentionally designed  to cause the 
model to make a  mistake”

(Goodfellow et al 2017)
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What if the adversary systematically found 
these inputs?

Biggio et al., Szegedy et al., Goodfellow et al., Papernot et al.



Good models make surprising  
mistakes in non-IIDsetting

Schoolbus Ostrich

+ =

Perturbation
(rescaled for visualization)

(Szegedy et al, 2013)

“Adversarial examples”
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Adversarial Examples

88% tabby cat 99% guacamole



Don’t Bring Your Turtle to a Gun Fight
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Adversarial examples...
… beyond deep learning 
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… beyond computer vision

Logistic Regression

Support Vector Machines

P[X=Malware] = 0.90
P[X=Benign] = 0.10 

P[X*=Malware] = 0.10
P[X*=Benign] = 0.90 Nearest Neighbors

Decision Trees



Formal Definition (Local Robustness)

• Let 𝑂 ⊆ 𝑋×𝑋 be a binary  oracle
• 𝑂 𝑥, 𝑥H = 1 (examples 𝑥 and 𝑥H “perceived” same)
• Otherwise 0 (Examples are “perceived” different)

• Targeted local robustness 𝑇𝑅h 𝑥, 𝐹, 𝑡
• ∀𝑥H ∶ 𝑂 𝑥, 𝑥H ⇒ ¬ 𝐹 𝑥H = 𝑡

• Global targeted robustness predicate/metric 𝐺𝑇𝑅h(𝐹, 𝑡)
• 𝐸 m∼4 (𝑇𝑅n 𝑥, 𝐹, 𝑡 )

• Observation
• Targeted adversarial examples are counterexamples to 𝐺𝑇𝑅h(𝐹, 𝑡)
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Global Robustness

• Local robustness predicate 𝑅h 𝑥, 𝐹
• ∀𝑥H ∶ 𝑂 𝑥, 𝑥H ⇒ (𝐹 𝑥 = 𝐹(𝑥H))

• Global robustness predicate/metric 𝐺𝑅h 𝐹
• 𝐸 m∼4 (𝑅h 𝑥, 𝐹 )

• Observation
• adversarial examples are counterexamples to 𝐺𝑅h(𝐹)
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Instantiating the Oracle

• Ideal	
• 𝑂 𝑥, 𝑥H = 1 iff a human perceives 𝑥 and 𝑥Has same images
• Difficulty:

• We don’t completely how human perception worksL

• What researchers actually use
• 𝑂 𝑥, 𝑥H = 1 iff 𝑥 and 𝑥H are close under some norm

• 𝐿s
• 𝐿8
• 𝐿t (𝑝 ≥ 2)
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Threat Model

• White Box
• Complete access to the classifier 𝐹

• Black Box
• Oracle access to the classifier 𝐹
• for a data 𝑥 receive 𝐹(𝑥)

• Grey Box
• Black-Box + “some other information”
• Example: structure of the defense
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FGSM (white box, misclassification)

• Take a step in the 
• direction of the gradient of the loss function
• 𝛿 = 𝜖 𝑠𝑖𝑔𝑛(Δm 𝑙 𝑤, 𝑥, 𝐹 𝑥 )
• Essentially opposite of what SGD step is doing

• Paper
• Goodfellow, Shlens, Szegedy. Explaining and harnessing adversarial examples. 

ICLR 2015
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PGD (white box, misclassification)

• Proj V m,� (𝑦)
• Project 𝑦 to the ball 𝐵 𝑥, 𝜖

• Iterate the following step
• 𝑥 ��8 = Proj V m,� ( 𝑥� + 𝜖 𝑠𝑖𝑔𝑛 Δm 𝑙 𝑤, 𝑥, 𝐹 𝑥 )

• Intuition:
• Take a FGSM step, and
• Project it down to the ball
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JSMA (white-box, targeted) 

42
The Limitations of Deep Learning in Adversarial Settings [IEEE EuroS&P 2016]
Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and Ananthram Swami



Other Attacks (White-box, targeted)

● Carlini-Wagner (CW) 

○ Use optimization engines (i.e. Adam) in a black-box manner

● Athalye-Carlini-Wagner

○ More on this later….

○ Builds on CW
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Remote 
ML sys

Local 
substitute

“no truck 
sign” “STOP sign”

Attacking remotely hosted black-box models

Practical Black-Box Attacks against Machine Learning [AsiaCCS 2017]
Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z.Berkay Celik, and Ananthram Swami



Abstract Algorithm

• Choose 𝑆 (substitute network)

• Interact with the classifier 𝐹 in a black-box manner

• Train the substitute network 𝑆

• Run white-box attack on 𝑆
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FM Perspective

• Gradient Free Optimization
• Black-box Adversarial Attacks with Limited Queries and Information, Andrew 

Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin, ICML 2018
• Query-Efficient Hard-Label Black-box Attacks: An Optimization-based 

Approach, Cheng etl al., ICML 2019

• These are very powerful black-box learner 
• Problem: Use these in verification 
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https://arxiv.org/abs/1804.08598


Defense
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Robust Defense Has Proved Elusive

• Quote
• In a case study, examining noncertified white-box-secure defenses at ICLR 

2018, we find obfuscated gradients are a common occurrence, with 7 of 8 
defenses relying on obfuscated gradients. Our new attacks successfully 
circumvent 6 completely and 1 partially.

• Paper
• Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses 

to Adversarial Examples.
• Anish Athalye, Nicholas Carlini, and David Wagner, ICML 2018
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Certified Defenses

• Robustness predicate 𝑅𝑜 𝑥, 𝐹, 𝜖
• For all 𝑥H ∈ 𝐵 𝑥, 𝜖 we have that 𝐹 𝑥 = 𝐹(𝑥H)

• Robustness certificate 𝑅𝐶 𝑥, 𝐹, 𝜖 ⇒ 𝑅𝑜 𝑥, 𝐹, 𝜖

• We should be developing defenses with certified defenses

49

Certified Defenses

• Robustness predicate !" #, %, &
• For all #' ∈ ) #, & we have that % # = %(#')

• Robustness certificate !- #, %, & ⇒ !" #, %, &

• We should be developing defenses with certified defenses

44

Semidefinite relaxations for certifying robustness to adversarial 
examples , Aditi Raghunathan, Jacob Steinhardt and Percy Liang

https://arxiv.org/pdf/1811.01057.pdf
http://cs.stanford.edu/~jsteinhardt/
https://cs.stanford.edu/~pliang/


Verification of DNNs

• Towards Fast Computation of Certified Robustness for ReLU
Networks

• Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Duane 
Boning, Inderjit S. Dhillon, Luca Daniel, ICML 2018

• Activation function limited to:  𝑓 𝑥 = 𝑥� = max(0, 𝑥)

• Follow up of  CAV 17 paper by Katz et al.
• Quote: “ … our algorithms are more than 10,000 times faster”
• Based on spectral techniques

• 𝐹, 𝑥 ⊨ 𝑅𝑜(𝑥, 𝐹, 𝜖)
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https://arxiv.org/search?searchtype=author&query=Weng,+T
https://arxiv.org/search?searchtype=author&query=Zhang,+H
https://arxiv.org/search?searchtype=author&query=Chen,+H
https://arxiv.org/search?searchtype=author&query=Song,+Z
https://arxiv.org/search?searchtype=author&query=Hsieh,+C
https://arxiv.org/search?searchtype=author&query=Boning,+D
https://arxiv.org/search?searchtype=author&query=Dhillon,+I+S
https://arxiv.org/search?searchtype=author&query=Daniel,+L


Robust Objectives

• Use the following objective
• min

K
𝐸2 max

2�∈V 2,�
𝑙 𝑤, 𝑧H

• Outer minimization use SGD
• Inner maximization use PGD

• A. Madry, A. Makelov, L. Schmidt, D. Tsipras, A. Vladu. Towards Deep 
Learning Models Resistant to Adversarial Attacks. ICLR 2018

• A. Sinha, H. Namkoong, and J. Duchi. Certifying Some Distributional 
Robustness with Principled Adversarial Training. ICLR 2018
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Adversarial Training

1. Train the model naturally (the procedure I described first)
2. Adversarial training for each element 𝑥;

1. Run PGD attack from 𝑥; and get 𝑧; (adversarial example)
2. Use natural training on 𝑧;

Note: Using attack technique to make the model more robust
Analogy: Counterexample guided re-training (refinement?)
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Theoretical Explanations
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Three Directions (Representative Papers)

• Lower Bounds
• A. Fawzi, H. Fawzi, and O. Fawzi. Adversarial Vulnerability for any Classifier.

• Sample Complexity
• Analyzing the Robustness of Nearest Neighbors to Adversarial Examples, 

Yizhen Wang, Somesh Jha, Kamalika Chaudhuri, ICML 2018
• Adversarially Robust Generalization Requires More Data. Ludwig Schmidt, 

Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, Aleksander Mądry, ICLR 2018
• We show that already in a simple natural data model, the sample complexity of robust 

learning can be significantly larger than that of "standard" learning.
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Three Directions (Contd)

• Computational Complexity
• Adversarial examples from computational constraints. Sébastien Bubeck, Eric 

Price, Ilya Razenshteyn, ICML 2019
• Computational Limitations in Robust Classification and Win-Win Results.

Akshay Degwekar and Vinod Vaikuntanathan, COLT 2019

• Jury is Still Out!!
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Adversarially Robust Learning 
Could Leverage Computational 

Hardness

Sanjam Garg Somesh Jha Saeed Mahloujifar Mohammad Mahmoody

https://arxiv.org/search/cs?searchtype=author&query=Garg,+S
https://arxiv.org/search/cs?searchtype=author&query=Jha,+S
https://arxiv.org/search/cs?searchtype=author&query=Mahloujifar,+S
https://arxiv.org/search/cs?searchtype=author&query=Mahmoody,+M


Cryptography is based on computational hardness

Information Theoretic Adversary Computationally bounded adversary

Encryption Signatures Encryption Signatures



We study whether there is any learning task for 
which it is possible to design classifiers that are 
only robust against polynomial-time adversaries.

We show that computational limitation of attackers can 
indeed be useful in robust learning by demonstrating a 
classifier that is only robust against poly-time 
adversaries



Several Interesting Directions/Questions

• Can the underlying task be made more natural?

• Can this direction lead to practical/deployable 
defenses?



Verification, Analysis, Testing
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Formal Definition

• Let 𝑂 ⊆ 𝑋×𝑋 be a binary  oracle
• 𝑂 𝑥, 𝑥H = 1 (examples 𝑥 and 𝑥H “perceived” same)
• Otherwise 0 (Examples are “perceived” different)

• Local robustness predicate 𝑅h(𝑥, 𝐹)
• ∀𝑥H ∶ 𝑂 𝑥, 𝑥H ⇒ (𝐹 𝑥 = 𝐹(𝑥H)

• Global robustness predicate 𝐺𝑅h 𝐹
• ∀𝑥 𝐺𝑅h 𝐹

• Observation
• adversarial examples are counterexamples to 𝐺𝑅h(𝐹)

Formal Definition

• Let ! ⊆ #×# be a binary  oracle
• ! %, %' = 1 (examples % and %' “perceived” same)
• Otherwise 0 (Examples are “perceived” different)

• Local robustness predicate 78(%, :)
• ∀%' ∶ ! %, %' ⇒ (: % = :(%')

• Global robustness predicate >78 :
• ∀% >78 :

• Observation
• adversarial examples are counterexamples to >78(:)
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Decision Procedures

• Decision procedures for verifying local robustness at a point
• Safety Verification of DNNs, CAV 2017
• ReLUplex: An Efficient SMT Solver for Verifying DNNs, CAV 2017
• …

• Great work, but
• Scalability (see earlier slide)
• Not coupled with some of the ML techniques being developed

• Problem
• Can these decision procedures help in adversarial training?
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Analysis/Testing

• DeepXplore, SOSP 17

• Formal Symbolic Analysis of Neural Networks using Symbolic 
Intervals, Usenix Security 2018

• AI2: Abstract Interpretation of Neural Networks, Oakland 2018
• See also follow up work by Isil Dillig’s group (PLDI 2019)

• Problem
• Can these techniques help in adversarial training?
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Glaring Omission from AML

• Specification of the system that is using ML
• Control loop for flying a drone

• Problem
• Can we do better if we are more “application aware”?

• Good read…
• Towards Verified Artificial Intelligence, Sanjit A. Seshia, Dorsa Sadigh, S. 

Shankar Sastry
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https://arxiv.org/search?searchtype=author&query=Seshia,+S+A
https://arxiv.org/search?searchtype=author&query=Sadigh,+D
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Automatic Emergency Braking System

Environment

Controller
Plant

ML perception

distance, velocity

65

• Goal: Brake whenever an obstacle is detected
Automatic Emergency Braking System

Environment

Controller
Plant

ML perception

distance, velocity

80

• Goal: Brake whenever an obstacle is detected

Dreossi, Donze, Seshia, “Compositional Falsification of Cyber-Physical Systems with Machine Learning Components’, NFM 2017.



Theme 1

• We allowed only one kind of transformation
• Add a vector δ

• Allow richer transformations 
• Relevant to the application
• Translation, cloudy background, …..
• Paper

• A Rotation and Translation Suffice: Fooling CNNs with Simple Transformations

• Problem: 
• Construct adversarial examples given a specification of transformations?
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Semantic Adversarial Analysis and Training
DNN analysis must be more semantic

Non-semantic perturbation (i.e., noise)

Semantic perturbation (i.e., translation)

• Semantic modification
• System-level specification
• Sematic (re-)training
• Confidence-based analysis

67
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Generating Semantic Adversarial Examples with Differentiable Rendering
Jain et al. (In submission, but on arxiv)

3d-aware scene manipulation via inverse graphics. 
Yao et al. In Advances in neural information processing systems, 2018.



Theme 2

• Problem: 
• Construct adversarial examples that actually lead to system-level failures?

• We can then use these examples for adversarial training
• More on this later…
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Semantic Adversarial Analysis and Training
DNN analysis must be more semantic Example: AEBS

Counterexamples?

Perception-level spec:
“detect cars”

System-level spec:
“do not crash”

✕

✓

✕

✕
Does not affect the system

• Semantic modification
• System-level specification
• Sematic (re-)training
• Confidence-based analysis
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Semantic Adversarial Analysis and Training
DNN analysis must be more semantic Example: AEBS

Spec: “do not crash”

Semantic augmentation

Original
Training set

Original
Training set

+ +
vs

• Semantic modification
• System-level specification
• Semantic (re-)training
• Confidence-based analysis

71

Dreossi, Ghosh, Yue, Keutzer, Sangiovanni-
Vincentelli, Seshia, “Counterexample-
Guided Data Augmentation”, IJCAI 2018.



Experimental Results

S. A. Seshia 72

Train Test Test Aug.

Counterexamples

• Augmentation methods comparison

Model Precision Recall
Original 0.61 0.74

Standard 
augmentation 0.69 0.80

Random 0.76 0.87
Halton 0.79 0.87

Distance
constraint 0.75 0.86

Counterexample-guided
augmentation

“Counterexample-Guided Data Augmentation”, T. Dreossi, S. Ghosh, X. Yue, K. Keutzer,             
A. Sangiovanni-Vincentelli, S. A. Seshia, IJCAI 2018.



Theme 3

• Problem: 
• Can we use ML in a white-box manner to synthesize more resilient controllers?

• Some evidence that using confidence measure (i.e. output of softmax
layer) can help

• Reinforcing Adversarial Robustness using Model Confidence Induced by 
Adversarial Training, Xi Wu, Uyeong Jang, Jiefeng Chen, Lingjiao Chen, 
Somesh Jha, ICML 2018

73

http://andrewxiwu.github.io/public/papers/2018/WUCCJ18-confidence.pdf


Semantic Adversarial Analysis and Training
DNN analysis must be more semantic

• Semantic modification
• System-level specification
• Semantic (re-)training
• Confidence-based analysis

Example: AEBS
Spec: “do not crash”

AEBS
(threshold 50%)

No car
Keep going

Maybe car…
Better slow down

AEBS
(confidence 

analysis)

vs

Prediction: car 49 %
74



Theme 3

• Problem: 
• Can we generate adversarial examples that matter (i.e. cause system-level 

failure)?

75

T. Dreossi, A. Donze, and S. A. Seshia. Compositional 
Falsification of Cyber-Physical Systems with Machine Learning 
Components, In NASA Formal Methods Symposium, May 2017. 



Compositional Falsification

Statement
given a formal specification ϕ (say in a formalism such as signal 
temporal logic) and a CPS+ML model M, 

find an input for which M does not satisfy ϕ.

Problem:
How do handle the ML component?
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Obvious Strategies

• Treat ML component as any other component and 
• Let “abstraction refinement” handle it
• Will it work?

• DNN models are constantly getting bigger (>= 20 million parameters)
• Some folks are talking about a billion parameters

• Use adversarial example generator as a “black box”
• Will it work?

• Will generate lot of examples that won’t falsify the system 
• Density of “spurious” adversarial examples is too large

• This is a conjecture!!!
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Our Approach: Use a System-Level 
Specification

78

“Verify the Deep Neural Network Object Detector”

“Verify the System containing the Deep Neural Network”

Formally Specify the End-to-End Behavior of the System

Controller Plant

Environment

Learning-Based Perception

Temporal Logic: G (dist(ego vehicle, env object) > D)



Compositional Falsification

79

• However: no formal spec. for neural network 
component!

• Compositional Verification without Compositional 
Specification?!!

Controller Plant

Environment

Learning-Based Perception

• Challenge: Very High Dimensionality of Input Space!
• Standard solution: Use Compositional (Modular)

Verification



Compositional Approach: Combine 
Temporal Logic CPS Falsifier with ML 
Analyzer

80

• CPS Falsifier uses abstraction of ML component
• Optimistic analysis: assume ML classifier is always correct
• Pessimistic analysis: assume  classifier is always wrong

• Difference is the region of uncertainty where output of the ML 
component “matters”

System-Level
Analysis

(CPS Falsifier)

Component
(ML) Analysis

System S

Env. E
Property F

Region of Uncertainty
(projected) UROUC

Component-level errors
(misclassifications)

Correct / Incorrect (+ counterexamples)



Identifying Region of Uncertainty (ROU) 
for Automatic Emergency Braking System
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ML always correct ML always wrong Potentially unsafe region 
depending on ML component 

(yellow)

Green à environments where the property is satisfied



Sample Result
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Inception-v3
Neural 

Network
(pre-trained on 
ImageNet using 

TensorFlow)

Misclassifications

This misclassification may not be of concern



Sample Result
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Inception-v3
Neural 

Network
(pre-trained on 
ImageNet using 

TensorFlow)

Misclassifications

Corner case
Image  

But this one is a real 
hazard!



Theme 4 (*)

• Problem: 
• Can we use the specification to modify the loss function?

• Intuition
• Steer the ML model towards correcting mis-classifications that cause system-

level failure?
• Initial results, but inconclusive!

• Trained with hinge loss
• Does reduce the impact of the collision
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Future
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Exciting Area

• Several problems mentioned during the talk

• Get involved
• Several workshops coming up
• Don’t ignore the email invitations J

• Release benchmarks!
• https://www.robust-ml.org/
• https://github.com/tensorflow/cleverhans
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https://www.robust-ml.org/


Get involved!
https://github.com/tensorflow/cleverhans
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