Dealling with
The Distributed Systems

Foupdations of Managing Data in
Challenges the Cloud

Amr El Abbadi
University of California,
Santa Barbara

Evolution of computing history

e Main Frame with terminals

e Network of PCs & Workstations.

* Client-Server
* Now, moving forward to

Large cloud.

NETYS 2013 Morocco

Cloud Computing: Why Now?

* Experience with very large datacenters
— Unprecedented economies of scale
— Transfer of risk

* Technology factors
— Pervasive broadband Internet
— Maturity in Virtualization Technology

 Business factors
— Economies of Scale
— Pay-as-you-go billing model

NETYS 2013 Morocco

Cloud’s Promise: Elasticity

e Pay per use instead of provisioning for peak

N N
1] Capacity ¢
ol O
))
O O
O emand D
24 a g’

Time Time

Traditional Infrastructures Deployment in the Cloud

Unused resources
Slide Credits: Berkeley RAD Lab
Sydney March 2012 4

Cloud Reality: Elasticity

Explosive Data growth

Wikipedia has over 3.5 million pages.
Yahoo! 650M+ unique user, 11B page visits/month
Flickr members uploaded over 5 billion photos

Facebook:1Billion users,1.13 Trillion "likes", 2198Billion
photos and 140.3 Billion friendships.

You Tube: 35 hours of videos uploaded each min.

“more video uploaded to YouTube in the past two
months than there would have been if ABC, CBS, and
NBC had been airing 24/7 since 1948!”

NETYS 2013 Morocco 6

Cloud Properties

* Commodity hardware
* Large Scale
 Elasticity

NETYS 2013 Morocco

Elasticity in the Cloud

Client Site Client Site Client Site

Server Server Server Server Server

NETYS 2013 Morocco

Why does this work?

* Aslong as requests are stateless, we can add
more resources, thus providing:

eScale
e Elasticity

NETYS 2013 Morocco

But, most services need DATA!

* Challenges:

—How to scale with the increasing
amounts of data

—Where to store the data
—Accessing data on multiple sites

—Failures

NETYS 2013 Morocco

10

Need

Fault-tolerance:

— Replication

Large scale data:

— Partition data across multiple servers

Managing the system state.
Must understand:

— Database foundations
— Distributed systems foundations.

NETYS 2013 Morocco

11

Main Characteristics of Distributed
Systems

Independent processors,
sites, processes

Message passing
No shared memory
No shared clock

Independent failure
modes

NETYS 2013 Morocco

12

Distributed System Models

* Synchronous System: Known bounds on times
for message transmission, processing , bounds
on local clock drifts, etc.

— Can use timeouts

* Asynchronous System: No known bounds on
times for message transmission, processing,
bounds on local clock drifts, etc.

— More realistic, practical, but no timeout.

NETYS 2013 Morocco

13

CAUSALITY AND TIME

What is a Distributed System?

* Asimple model of a distributed system
proposed by Lamport in a landmark 1978
paper:

 “Time, Clocks and the Ordering of Events in a

Distributed System” Communications of the
ACM

NETYS 2013 Morocco 15

What is a Distributed System?

* Aset of processes that communicate using
message passing.
* A processis a sequence of events

* 3 kinds of events:
— Local events
— Send events
— Receive events

* Local events on a process for a total order.

NETYS 2013 Morocco

Example of a Distributed System

€

PI ® —
/|

Pz ® -
8 5> 53 84

Py @ @ @ -

NETYS 2013 Morocco

17

Happens Before or Causal Order
on Events

* Event e happens before (causally precedes)
event f, denoted e if: f

1. The same process executes € before f ; or
2. eissend(m) and f is receive(m); or
3. Existshsothate —andh - f

* We define concurrenfe || f, as:
(e Wff - e)

NETYS 2013 Morocco 18

Lamport Logical Clocks

* Assign “clock” value to each event
—if a- b then clock(a) < clock(b)

* Assign each process a clock “counter”.

— Clock must be incremented between any two
events in the same process

— Each message carries the sender’s clock value

* When a message arrives set local clock to:

— max(local value, message timestamp + 1)

NETYS 2013 Morocco

19

Example of a Logical Clock

P -
(1) (2) (5)

2)

FI

e ° ® ®
(1) @ @ 6 @

(2) (6

P4

e o @ ®

() @) 6 6 (7)

NETYS 2013 Morocco

20

Vector clocks

. Vector initialized to 0 at each process
V.[]]=0forl, =1, .., N

. Process increments its element of the vector

in local vector before event:
. Piggyback V; with every message sent from
process P,

. When P, receives message, compares vectors
element by element and sets local vector to
higher of two values

V; [1] = max(V; [1], V; [1]) fori=1, ..., N

NETYS 2013 Morocco 21

Comparing vector timestamps

Define
V=Viff V[I1=V]i] fori=1...N
Veviff VIITeV][i] fori=1..N
For any two events e, e’
e- ¢’ ifandonlyif V(e)<V(e')

Two events are concurrent if neither
V(e) ¢ V(e’) nor V(e’) ¢ V(e)

NETYS 2013 Morocco 22

Vector Clock Example

(1000 (2,100 (3,1.0,0)

i il £y —
= - = =
et et et T
(0,1,0.0] (0.2.0.0] (2.3.3.1]

i i i i —

St St St R =
(0.0.1,0) (0.0.2.1) (213,11 (2.14.1]

Pl i —

et R =
10,00.1) 10,0,0.2)

NETYS 2013 Morocco 23

MUTUAL EXCLUSION AND
QUORUMS

Distributed Mutual Exclusion

* Given a set of processes and a single resource,
develop a protocol to ensure exclusive access
to the resource by a single process at a time.

* Thisis a fundamental operation in operating
systems, and is generalized to locking in
databases.

NETYS 2013 Morocco 25

Centralized Solution

* Choose a special coordinator site, coord.

* Coord maintains a queue of pending requests.

* Protocol:
— Process send request to coord.

— If no other request, coord sends back reply.
* Otherwise, put request in queue

— On receipt of reply, process accesses resource.
— Once done, process sends release to coord.

— On receipt of release, coord checks queue for any
pending requests.

NETYS 2013 Morocco

26

Centralized Solution

release(R)

thanks paul krzyzanowski rutgers

NETYS 2013 Morocco

27

Distributed Solution (Lamport ‘78)

* |nstead of a central coordinator, all processes
collectively

* Use similar approach:

— Process sends request to all processes and put request
in local queue.

— On receipt of request, process sends back reply.

— Process accesses resource
* On receipt of all replies
 Own request at head of queue

— Once done, process sends release to all processes.
— On receipt of release, process removes request

NETYS 2013 Morocco 28

Distributed Solution

* Does this work (Lamport original solution)?
* Need to order queues so they are identical:

— Use logical Lamport time + proc id to break ties.
— FIFO channels

* Requests are executed in causal order.

NETYS 2013 Morocco

29

Quorums

What if there are failures?
Do we need to communicate with ALL processes?

Any two requests should have a common process
to act as an arbitrator.

Let process p. (p;)request permission from V, (V), then
Vi V% .
V. is called a quorum.

Basic protocol still works (basically think locking),
but: Deadlock

NETYS 2013 Morocco 30

Quorums

* Given n processes: 2|V,

O

* [n general, majority, ie

NETYS 2013 M

| >n, ie,

(n/2) . [Gifford 79]

OOOOOO

31

General Quorums

* In a database context, we have read and write
operations. Hence, read quorums, Q,, and
write quorums, Q,,.

* Simple generalization:
_QrZ QW ¢(pl QW Z QW ¢(p
-Q,+Q,>n and2Q,,>n

NETYS 2013 Morocco 32

CONSENSUS AND BYZANTINE
AGREEMENT

Consensus or Byzantine Agreement

 The Story (Lamport, Shostak, and Pease in 1982)

* Malicious Failures (byzantine failures)

* General sends an binary value to n-1 participants
such that:

1.Agreement: All correct participants agree on
same value

2.Validity: If general is correct, every
participant agrees on the value general
sends

NETYS 2013 Morocco 34

General Impossibility Result

* |[n a synchronous distributed system:

No solution with fewer than 3f+1
processes can cope with f failures

NETYS 2013 Morocco

35

Paxos

* Lamport the archeologist and the “Part-time
Parliament” of Paxos:

— The Part-time Parliament, TOCS 1998

— Paxos Made Simple, ACM SIGACT News 2001.
— Paxos Made Live, PODC 2007

— Paxos Made Moderately Complex, (Cornell) 2011.

The Paxos Atomic Broadcast Algorithm
Thanks to Idit Keidar for slides

* Leader based: each process has an estimate of
who is the current leader

* To order an operation, a process sends it to
current leader

* The leader sequences the operations and
launches a Consensus algorithm to ensure
agreement

NETYS 2013 Morocco 37

The Consensus Algorithm Structure

Two phases
Leader contacts a majority in each phase
There may be multiple concurrent leaders

Ballotsdistinguish among values proposed by
different leaders

— Unique, locally monotonically increasing

— Processes respond only to leader with highest ballot seen
so far

NETYS 2013 Morocco

38

The Two Phases of Paxos

* Phase 1: prepare

— If you believe you are the leader
* Choose new unique ballot number
* Learn outcome of all smaller ballots from majority

* Phase 2: accept
— Leader proposes value with its ballot number
— Leader gets majority to acceptits proposal
— A value accepted by a majority can be decided

NETYS 2013 Morocco

39

In Failure-Free Execution

(npr edBr e o, (Aaccaepw)o,
o/ o
(/2 akd®,o

—_—

N
&) Z ‘

(A ac celdMm) O

NETYS 2013 Morocco 40

Performance?

(Aipr exs®Hr e o,

0O—0O

Y

"

Why is this phase needed”

(f/a ellde

(Aaccaepw)o,
— /

@
e\ e

0,08")

[} [}
[} [}
»
»

(A ac celdpw)o ,

NETYS 2013 Morocco

41

Failure free execution

\@ est

NP O\

(Aprepareddjinacko) . (facept 0)

\) | @/
Y Y
Phase 1 Phase 2

NETYS 2013 Morocco 42

Optimization

* Run Phase 1 only when the leader changes

— Phase 1 is called “view change” or “recovery
mode”

— Phase 2 is the “normal mode”

 Each message includes BallotNum (from the
last Phase 1) and RegNum

* Respond only to messages with the “right”
BallotNum

NETYS 2013 Morocco

43

FLP Impossibility Theorem

* |n an asynchronous system, consensus is
impossible to solve if one process may crash
and processes communicate by message
passing.

* Proved by Fisher, Lynch and Paterson in PODS
1983 and who won the Dijkstra Prize for this
result.

NETYS 2013 Morocco 44

CAP Theorem (Eric Brewer)

* “Towards Robust

Distributed Systems” PARTITIONING-
PODC 2000.

UNAVAILABILITY INTOLERANCE
* “CAP Twelve Years
Later: How the
"Rules" Have

Changed” [EEE i PARTITION TOLERANCE '\
Computer 2012 :
INCONSISTENCY __~

NETYS 2013 Morocco 45

CAP—-WhyP(AorC)?

If we choose A, then Eventual Consistency...

NETYS 2013 Morocco

46

Why sacrifice Consistency?

* |tis asimple solution
— nobody understands what sacrificing P really means
— sacrificing A is unacceptable in the Web
— possible to push the problem to app developer
 Cnot needed in many applications
— Banks do not implement ACID (classic example wrong)
— Airline reservation only transacts reads (Huh?)
— MySQL et al. ship by default in lower isolation level
* Data is noisy and inconsistent anyway
— making it, say, 1% worse does not matter J

NETYS 2013 Morocco [Vogels, VLDB 2007]

PEER TO PEER AND
DISTRIBUTED HASH TABLES

Distributed Hash Tables

Challenge: To design and implement a robust
and scalable distributed system composed of
inexpensive, individually unreliable computers
in unrelated administrative domains

Partial thanks Idit Keidar) NETYS 2013 Morocco 49

Searching for distributed data

* Goal: Make billions of objects available to
millions of concurrent users

— e.g., music files

* Need a distributed data structure to keep
track of objects on different sires.

— map object to locations

* Basic Operations:
— Insert(key)
— Lookup(key)

NETYS 2013 Morocco

50

Searching

Key=ntitl
Val ue=MP3 C%t
Puﬂsher Lookup(nt.i
N N
4 A
g |\ 9

NETYS 2013 Morocco 51

Simple Solution

* First There was Napster

— Centralized server/database for lookup

— Only file-sharing is peer-to-peer, lookup is not
* Launched in 1999, peaked at 1.5 million

simultaneous users, and shut down in July
2001.

NETYS 2013 Morocco

52

Overlay Networks

e Avirtual structure imposed over the
physical network (e.g., the Internet)

— A graph, with hosts as nodes, and some edges

Node ids Keys

— > I Overlay Hash fn

Network

NETYS 2013 Morocco 53

Unstructured Approach: Gnutella

* Build a decentralized unstructured overlay
— Each node has several neighbors
— Holds several keys in its local database

* When asked to find a key X

— Check local database if X is known
— If yes, return, if not, ask your neighbors

e Use a limiting threshold for propagation.

NETYS 2013 Morocco

54

Structured vs. Unstructured

* The examples we described are unstructured

— There is no systematic rule for how edges are
chosen,
each node “knows some” other nodes

— Any node can store any data so a searched data
might reside at any node
 Structuredoverlay
— The edges are chosen according to some rule
— Data is stored at a pre-defined place
— Tables define next-hop for lookup

NETYS 2013 Morocco

55

Distributed Hash Tables (DHTs)

Nodes store table entries

lookup(key) returns the location of the node

currently responsible for this key

We will discuss Chord, Stoica, Morris, Karger,
Kaashoek, and Balakrishnan SIGCOMM 2001

Other examples: CAN (Berkeley), Tapestry
(Berkeley), Pastry (Microsoft Cambridge), etc.

NETYS 2013 M

OOOOOO

56

Chord Logical Structure (MIT)

* M-bit ID space (2MIDs), usually m=160.

* Nodes organized in a logical ring according
to their IDs.

N56 N1
N51 NS
N48 10
N14
N4
N21
N38

N30

o7

DHT: Consistent Hashing

Key 5—— K5
Node 105
\
N105 ‘ K20

Circular ID space ’ N32

A key Is stored at its successor: node with next higher ID

imati NETYS 2013 M -
Thanks CMU for animation orocco

DHT: Chord “Finger Table”

1/4 1/2

1/8

1/16
1/32
1/64
1/128

N8O ‘

« Entry i in the finger table of node n is the first node that succeeds or
equals n + 2!

* In other words, the it" finger points 1/2" way around the ring

NETYS 2013 Morocco 59

DHT: Chord Routing

* Upon receiving a query for P——
item id, a node: R S
* Checks whether it stores the of 1|1
item locally? ; i g
* If not, forwards the query to [}
\ Succ. Table |tems

i lid+2|succ| | 1
of 2 2
1] 3 6

the largest node in its
successor table that does N
not exceed Id

Succ. Table 36

i |id+2'|succ \

ﬁ Succ. Table

21 2| 2 i lid+2'|succ
0] 3 6
1} 4 6
2| 6 6

NETYS 2013 Morocco 60

Routing Time
Node n looks up a key stored at
node
pisin N’s ith interval:
pl ((N+2Y)mod 2™, (n+2)mod 2M]
n contacts f=finger|]

— The interval is not empty so:
fl ((N+2YY)mod 2™, (n+2)mod 2™

fis at least 2-1away from n
p is at most 21 away from f

The distance is halved at each
hop.

finger([i]

The Transaction Concept

* Transactions were originally developed in the
context of DBMS as a paradigm to deal with:

— Concurrent access to shared data
— Failures of different kinds/types.

* The key problem solved in an elegant manner:

— Subtle and difficult issue of keeping data consistent in
the presence of concurrency and failures

while ensuring performance, reliability, and
availability.

NETYS 2013 Morocco 62

Preliminaries: A database

A database consists of a set of objects.

A transaction is a set of operations (typically read
and write) executed in some partial order.
Transaction execution must be atomic:

— no interference among transactions.

— Either all its operations are executed or none.

Concurrency control protocol ensures that concurrent
transactions do not interfere with each other.

Recovery protocol ensures the all or nothing property.

NETYS 2013 Morocco 63

Concurrency Control

* A history is serializable if it is equivalent to a
serial history over the same set of
transactions.

* Different notions of serializability:
* View Serializability: NP Complete L
* Conflict Serializability: H is CSR iff SG(H) is acyclic

* Two Phase locking.
¢ deadIOCk [[[[[S aling SO g phase

< L]
]

Number of locks

NETYS 64

Atomic Commitment

* Distributed handshake protocol known as two-
phase commit (2PC):

— A coordinator (the Transaction Manager) takes the
responsibility of unanimous decision: COMMIT or
ABORT

— All database servers are the cohorts in this protocol
and become dependent on the coordinator

NETYS 2013 Morocco 65

ldea: Getting Married over the NW

Married!

NETYS 2013 Morocco 66

Commit Protocols

What does a process do if it does not receive a message
it is expecting? It BLOCKS.

2 PC blocks with failures
3PC is non-blocking with site failures only.
3PC blocks with partitioning failures.

A\ O

Partition 1 Partition 2

Theorem [Skeen83]: There is no non-blocking atomic
commit protocol in the presence of partitioning failures.

NETYS 2013 Morocco 67

The Data Centers

Cloud Reality

68

NETYS 2013 Morocco

Scaling in the Cloud

Client Site Client Site Client Site

App
Server Server Server Server Server

Database becomes the
Scalability Bottleneck
Cannot leverage elasticity

NETYS 2013 Morocco 69

Scaling in the Cloud

Client Site Client Site Client Site

Server Server

NETYS 2013 Morocco

70

Scaling in the Cloud

Client Site Client Site Client Site

App App
Server Server Server Server Server

Scalable and Elastic,
but limited consistency and &k

operational flexibility

71

.4
L
‘eneotechnology

NOSQL

for Dummies

wwitter: @thobe / #neod]
emall: toblas@neotechnology.com
web: http://www.neodj.org/

Hacker @ Neo Technology web: hiealivaliERE e

Tobias Ivarsson

NETYS 2013 Morocco 72

. mongoDB

Key Value Stores &< ...
y Cassandra e ‘:
wr I q CouchDB

e Key-Valued data model
— Key is the unique identifier
— Key is the granularity for consistent access
— Value can be structured or unstructured

* Gained widespread popularity

— In house: Bigtable (Google), PNUTS (Yahoo!), Dynamo
(Amazon)

— Open source: HBase, Hypertable, Cassandra,
Voldemort

e Popular choice for the modern breed of web-
applications

NETYS 2013 Morocco 73

Big Table (Google)

e Data model.

— Sparse, persistent, multi-dimensional sorted map
indexed by a row key, column key, and a timestamp.

— (row: byte[], column: byte[], time: int64) A byte][]

e Scalability and Elasticity: Data is partitioned
across multiple servers.

NETYS 2013 Morocco 74

Atomicity Guarantees in Key-Value
Stores

* Every read or write of data under a single row
IS atomic.

* Objective: make read operations single-sited!

NETYS 2013 Morocco 75

Big Table’s Building Blocks

Tablet servers
— Handles read and writes to its tablet and splits tablets
— Each tablet is typically 100-200 MB in size
Master Server
— Assigns tablets to tablet servers
— Detects the addition and deletion of tablet servers
— Balances tablet-server load
Google File System (GFS)

— Highly available distributed file system that stores log and data
files

Chubby

— Manage meta-data
— Highly available persistent distributed lock manager

NETYS 2013 Morocco

76

Overview of Bigtable Architecture

Lease
Management

Control
Operations
L

(1 Master and Chubby Proxies

| Cache Manager | Log Manager

[Tablet
SEED

Dynamo (Amazon) and
Cassandra (Facebook)

* Consistent hashing: the

output range of aash function
IS treated as a fixed circular

space ofi r DalaChord. 2'>|/ 0\ U T—

- fiVirtual Nodes”: Each node /
can beresponsible for more o \ - node |
than one virtuahode(to deal \ e Sprions J2H
with nornruniform data and loas /
distribution) \ e \Hash Location

1

2|60/2

NETYS 2013 Morocco 78

Sloppy Quorum

R and W is the minimum number of nodes that must
participate in a successful read/write operation.

Setting R + W > N yields a quorum-like system.

Operation latency dictated by the slowest of t
replicas. For this reason, R and W are usually
configured to be less than N, to provide better
latency and availability.

Use vector clocks in order to capture causality
between different versions of same object

Application reconciles divergent versions and
collapses into a single new version.

NETYS 2013 Morocco 79

Vector clock example

write
handled by Sx

D1 ([Sx,1])
write
l handled by Sx

D2 ([Sx,2])

write write
handled by Sy handled by Sz

D3 ([Sx,2],[Sy,1]) D4 ([Sx,2],[Sz,1)])

reconciled
\ /and written by
D5 ([Sx,3],[Sy.11[Sz,1])

NETYS 2013 Morocco

80

Practical approaches to scalability
Circa Year 2000.
e Scale-up
— Classical enterprise setting

(RDBMS) %q

— Flexible ACID transactions i i

NN

— Transactions in a single node

e Scale-out
— Cloud friendly (Key value stores)
— Execution at a single server

* Limited functionality & guarantees

— No multi-row or multi-step
transactions

NETYS 2013 Morocco 81

Distribution & Consistency

* Application developers need higher-level
abstractions

— MapReduce paradigm for Big Data analysis
— Transaction Management in DBMSs

NETYS 2013 Morocco

82

NoSQL is apparently NOT going to
deliver World Peace

83

Supporting SQL in the Cloud

L

RDBMS Key Value Stores
Fission

Fusion

ElasTraS [HotCloud 60 09, TODS]
Cloud SQL Server [ICDE "11]
RelationalCloud [CIDR ‘11]

G-Store [SoCC d0]
MegaStore [CIDR ‘11]
ecStore [VLDB ‘10]
Walter [SOSP ‘11]

NETYS 2013 Morocco 84

First Gen Data Center Systems

C These systems question the wisdom of
abandoning the provendata management
principles

C Gradual realization of the value of the concept
of a “transaction” and other synchronization
mechanisms

¢ Avoid distributed transactions by co-locatingdata items
that are accessed together

Transactions using Data Partitioning
(Statically)

Workload driven

Pre-defined

partitioning scheme

— e.g.: Tree schema

— ElasTras, SQLAzure

— (TPC-C)

Primary
Table (k,)

T~

Secondary Table
(kpl ksl)

Secondary Table

(kpr k52)

Global Table
(kgl)

N

Secondary Table
(kp; k521 k53)

partitioning scheme
— e.g.: Schism in

RelationalCloud

1 replication edges
1 transaction edges

o

tuple

QAW -

- |aolomT 2
= le =

NETYS 2013 Morocco

86

Transactions using Data Partitioning
(Statically)

Megastore (Google)-CIDR 2011

 Semantically pre-defined as Entity Groups
— Blogs, email, maps
— Cheap transactions in Entity groups (common)

NETYS 2013 Morocco

87

Megastore Entity Groups

Semantically Predefined
 Email
— Each email account forms a natural entity group

— Operations within an account are transactional: user’s send
message is guaranteed to observe the change despite of fail-
over to another replica

* Blogs
— User’s profile is entity group

— Operations such as creating a new blog rely on asynchronous
messaging with two-phase commit

* Maps
— Dividing the globe into non-overlapping patches
— Each patch can be an entity group

NETYS 2013 Morocco

88

G-Store

UCSB Das et al. ACM SoCC’2010

* Transactionakccess to a group of data
itemsformed on-demand

— Dynamically formed database partitions
» ChallengeAvoid distributed transactions!

« Key Group Abstraction
— Groups are small
— Groups have non-trivial lifetime
— Groups are dynamicand on-demand

NETYS 2013 Morocco

89

Transactions on Groups

Without distributed transactions
Grouping Protocol

/F%

Key
Group
Ownership
of keys at a
single node

o One key selected as the
leader

° Followers transfer
ownershipof keys to leader

NETYS 2013 Morocco 90

Efficient Transaction Processing

e How does the leader execute transactions?

— Caches data for group members C underlying data
store equivalent to a disk

— Transaction logging for durability
— Cache asynchronously flushed to propagate updates
— Guaranteed update propagation

Transaction Manager

Leader Log

Cache Manager
Asynchronous update
Propagation

Followers @ @ @ @

NETYS 2013 Morocco

Prototype: G-Store

An impblementation over Kev-value stores
Application Clients

Transactional Multi-Key Access

Grouping middleware layer resident on top of a key-value store

Grouping | Transaction Grouping | Transaction Grouping | Transaction
Layer Manager Layer Manager Layer Manager
Key-Value Store Logic Key-Value Store Logic Key-Value Store Logic
. — Distributed Storage e

G-Store

NETYS 2013 Morocco 92

Challenge: Elasticity in Database tier

Load Balancer }
" Application/
811 B[[e
tier

— |

NETYS 2013 Moroy 93

Two common DBMS architectures

* Decoupled storage architectures

— ElasTraS, G-Store, Deuteronomy,
MegaStore

— Persistent data is not migrated
— Albatross [VLDB 2011]

* Shared nothing architectures

— SQL Azure, Relational Cloud,
MySQL Cluster

— Migrate persistent data
— Zephyr [SIGMOD 2011]

NETYS 2013 Morocco 94

Fault-tolerance in the Cloud

Need to tolerate catastrophic failures
— Geographic Replication
How to support ACID transactions over data replicated at

multiple datacenters
— One-copy serializablity: Gives Consistency and Replication. Clients can
access data in any datacenter, appears as single copy with atomic
access
Major challenges:
— Latency bottleneck (cross data center communication)
— Distributed synchronization
— Atomic commitment

NETYS 2013 Morocco 95

Non»2

/ Pacific

Round Trip Times

7 b TR

North

Pacific\

\

Ocaan.‘\‘

Brisbane 2013

1
—
. l‘ ' e
\‘ “ | . :
\ Indian Ocean
o o A BT L SRR I — S SSRGS (R, NERE AexB A A L-
\ \ . Atlantic
%0 — - z
Ocean
South 4
\
Paciflic
Ocean
® — v
- _.h-npa N e BA G Sr=oaee) 4 WSSt A LS e -
s 17500000 \ (i e g 2 ey Vo
\ = -
Rodinson Projection ~—— \ < -~ Bound: ———
s st i o " - - — “’—;- - j MMMIIW.A

Fault-tolerance in the Cloud

Megastore Google (CIDR 2011)
Paxos-CP UCSB (VLDB 2012)
Message Futures UCSB (CIDR 2013)
MDCC Berkeley (EuroSys 2013)
Spanner Google (OSDI 2012)
Replicated Commits UCSB (On-going)

NETYS 2013 Morocco

97

Next Steps

e Better understand the various paradigms and
alternatives.

* Develop a general framework to explain the
pros and cons of these approaches.

e Automatically configure systems for better
performance.

Distributed Systems References

Leslie Lamport: Time, Clocks, and the Ordering of Events in a
Distributed System. Commun. ACM 21(7): 558-565 (1978)

Mani Chandy, Leslie Lamport: Distributed Snapshots:
Determining Global States of Distributed Systems ACM Trans.
Comput. Syst. 3(1): 63-75 (1985)

Gene T. J. Wuu, Arthur J. Bernstein: Efficient Solutions to the
Replicated Log and Dictionart Problems. PODC 1984: 233-242

Hari Balakrishnan, M. Frans Kaashoek, David Karger, Robert
Morris, and lon Stoica. Looking up data in P2P systems. In
Communications of the ACM, February 2003

Reliable Distributed Computing with the Isis Toolkit. K. Birman
and R. van Renesse, eds. IEEE Computer Society Press, 1994.

NETYS 2013 Morocco 99

Distributed Systems References

Leslie Lamport, Robert E. Shostak, Marshall C. Pease: The

Byzantine Generals Problem. ACM Trans. Program. Lang. Syst.

4(3): 382-401 (1982)

Leslie Lamport: The Part-Time Parliament. ACM Trans.
Comput. Syst. 16(2): 133-169 (1998)

Michael J. Fischer, Nancy A. Lynch, Mike Paterson:
Impossibility of Distributed Consensus with One Faulty
Process. PODS 1983: 1-7

Eric A. Brewer. Towards robust distributed systems. (Invited
Talk)Principles of Distributed Computing, July 2000.

NETYS 2013 Morocco

100

Database References

* Concurrency Control and Recovery in Database Systems Philip A.
Bernstein, Vassos Hadzilacos, Nathan Goodman . 1987
(http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx)

 Gerhard Weikum, Gottfried Vossen: Transactional Information Systems:
Theory, Algorithms, and the Practice of Concurrency Control and Recovery
Morgan Kaufmann 2002

* Transaction Processing: Concepts and Techniques, Jim Gray and Andreas
Reuter. Morgan Kaufmann Publishers 1992

NETYS 2013 Morocco 101

Key-Value Store References

Chang, Dean, Ghemawat, Hsieh, Wallach, Burrows, Chandra, Fikes,
Gruber: Bigtable: A Distributed Storage System for Structured
Data. OSDI 2006

The Google File System: Sanjay Ghemawat, Howard Gobioff, and
Shun-Tak Leung. Symp on Operating Systems Princ 2003.

GFS: Evolution on Fast-Forward: Kirk McKusick, Sean Quinlan
Communications of the ACM 2010.

Cooper, Ramakrishnan, Srivastava, Silberstein, Bohannon,
Jacobsen, Puz, Weaver, Yerneni: PNUTS: Yahoo!'s hosted data
serving platform. VLDB 2008.

DeCandia,Hastorun,Jampani, Kakulapati, Lakshman, Pilchin,
Sivasubramanian, Vosshall, Vogels: Dynamo: amazon's highly
available key-value store. SOSP 2007

Cooper, Silberstein, Tam, Ramakrishnan, Sears: Benchmarking cloud
serving systems with YCSB. SoCC 2010

NETYS 2013 Morocco 102

First Gen Cloud db References

Das, Agrawal, El Abbadi, "G-Store: A Scalable Data Store for Transactional
adzt UA 1 Sée ! OOSgndpasiunhoyi ClomdCemputihg2SAZR)2010
Agrawal, El Abbadi, Antony, Das, "Data Management Challenges in Cloud

[2 Y Lddzu A y 3 L Yy lhtékdatdons Nz biopziM Badabases in
Networked Information Systems (DNIS 2010), March 2010

Das, Agrawal, El Abbadi, "ElasTraSAn Elastic Transactional Data Store in the
/| t 2 ,d#RToud '09

Curino, Jones,Popa,Malviya,Wu,Madden,Balakrishnan, Zeldovich: Relational
Cloud: a Database Service for the cloud. CIDR 2011

Bernstein, Cseri,Dani, Ellis, Kalhan, Kakivaya,Lomet,Manne,Novik,Talius:
Adapting microsoft SQL server for cloud computing. ICDE 2011.

Levandoski, Lomet, Mokbel,Zhao: Deuteronomy: Transaction Support for
Cloud Data. CIDR 2011.

Brantner, lorescu, Graf, Kossmann, Kraska: Building a database on $3. SIGMOD
2008.

Kraska, Hentschel, Alonso, Kossmann: Consistency Rationing in the Cloud: Pay
only when it matters. PVLDB 2009

Kossmann, Kraska, Loesing: An evaluation of alternative architectures for
transaction processing in the cloud. SIGMOD 2010

VLDB Summer School 2011 103

2nd Gen Cloud DB References

Baker, Bond,Corbett, Furman, Khorlin, Larson, Leon, Li, Lloyd, Yushprakh:

Megastore: Providing Scalable, Highly Available Storage for Interactive
Services. CIDR 2011.

Patterson, EImore, Nawab, Agrawal, El Abbadi: Serializability, not Serial:

Concurrency Control and Availability in Multi-Datacenter
Datastores. VLDB 2012

Nawab, Agrawal, El Abbadi, "Message Futures: Fast Commitment of
Transactions in Multi-datacenter Environments", CIDR, 2013

Kraska Pang, Franklin, Maddekrekete MDCC: Multi-Data Center
Consistency. EuroSys 2013

Corbett et al.: Spanner: Google's Globally-Distributed Database. OSDI
2012.

NETYS 2013 Morocco

104

